| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl2 | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P  ∧  𝐶  ∈  P )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑓  ∈  𝐴  ∧  𝑧  ∈  𝐶 ) ) )  →  𝐵  ∈  P ) | 
						
							| 2 |  | simprlr | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P  ∧  𝐶  ∈  P )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑓  ∈  𝐴  ∧  𝑧  ∈  𝐶 ) ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 3 |  | elprnq | ⊢ ( ( 𝐵  ∈  P  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  Q ) | 
						
							| 4 | 1 2 3 | syl2anc | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P  ∧  𝐶  ∈  P )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑓  ∈  𝐴  ∧  𝑧  ∈  𝐶 ) ) )  →  𝑦  ∈  Q ) | 
						
							| 5 |  | simp1 | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P  ∧  𝐶  ∈  P )  →  𝐴  ∈  P ) | 
						
							| 6 |  | simprl | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑓  ∈  𝐴  ∧  𝑧  ∈  𝐶 ) )  →  𝑓  ∈  𝐴 ) | 
						
							| 7 |  | elprnq | ⊢ ( ( 𝐴  ∈  P  ∧  𝑓  ∈  𝐴 )  →  𝑓  ∈  Q ) | 
						
							| 8 | 5 6 7 | syl2an | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P  ∧  𝐶  ∈  P )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑓  ∈  𝐴  ∧  𝑧  ∈  𝐶 ) ) )  →  𝑓  ∈  Q ) | 
						
							| 9 |  | simpl3 | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P  ∧  𝐶  ∈  P )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑓  ∈  𝐴  ∧  𝑧  ∈  𝐶 ) ) )  →  𝐶  ∈  P ) | 
						
							| 10 |  | simprrr | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P  ∧  𝐶  ∈  P )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑓  ∈  𝐴  ∧  𝑧  ∈  𝐶 ) ) )  →  𝑧  ∈  𝐶 ) | 
						
							| 11 |  | elprnq | ⊢ ( ( 𝐶  ∈  P  ∧  𝑧  ∈  𝐶 )  →  𝑧  ∈  Q ) | 
						
							| 12 | 9 10 11 | syl2anc | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P  ∧  𝐶  ∈  P )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑓  ∈  𝐴  ∧  𝑧  ∈  𝐶 ) ) )  →  𝑧  ∈  Q ) | 
						
							| 13 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 14 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 15 |  | ltmnq | ⊢ ( 𝑢  ∈  Q  →  ( 𝑤  <Q  𝑣  ↔  ( 𝑢  ·Q  𝑤 )  <Q  ( 𝑢  ·Q  𝑣 ) ) ) | 
						
							| 16 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 17 |  | mulcomnq | ⊢ ( 𝑤  ·Q  𝑣 )  =  ( 𝑣  ·Q  𝑤 ) | 
						
							| 18 | 13 14 15 16 17 | caovord2 | ⊢ ( 𝑦  ∈  Q  →  ( 𝑥  <Q  𝑓  ↔  ( 𝑥  ·Q  𝑦 )  <Q  ( 𝑓  ·Q  𝑦 ) ) ) | 
						
							| 19 |  | mulclnq | ⊢ ( ( 𝑓  ∈  Q  ∧  𝑧  ∈  Q )  →  ( 𝑓  ·Q  𝑧 )  ∈  Q ) | 
						
							| 20 |  | ovex | ⊢ ( 𝑥  ·Q  𝑦 )  ∈  V | 
						
							| 21 |  | ovex | ⊢ ( 𝑓  ·Q  𝑦 )  ∈  V | 
						
							| 22 |  | ltanq | ⊢ ( 𝑢  ∈  Q  →  ( 𝑤  <Q  𝑣  ↔  ( 𝑢  +Q  𝑤 )  <Q  ( 𝑢  +Q  𝑣 ) ) ) | 
						
							| 23 |  | ovex | ⊢ ( 𝑓  ·Q  𝑧 )  ∈  V | 
						
							| 24 |  | addcomnq | ⊢ ( 𝑤  +Q  𝑣 )  =  ( 𝑣  +Q  𝑤 ) | 
						
							| 25 | 20 21 22 23 24 | caovord2 | ⊢ ( ( 𝑓  ·Q  𝑧 )  ∈  Q  →  ( ( 𝑥  ·Q  𝑦 )  <Q  ( 𝑓  ·Q  𝑦 )  ↔  ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) )  <Q  ( ( 𝑓  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) ) ) ) | 
						
							| 26 | 19 25 | syl | ⊢ ( ( 𝑓  ∈  Q  ∧  𝑧  ∈  Q )  →  ( ( 𝑥  ·Q  𝑦 )  <Q  ( 𝑓  ·Q  𝑦 )  ↔  ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) )  <Q  ( ( 𝑓  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) ) ) ) | 
						
							| 27 | 18 26 | sylan9bb | ⊢ ( ( 𝑦  ∈  Q  ∧  ( 𝑓  ∈  Q  ∧  𝑧  ∈  Q ) )  →  ( 𝑥  <Q  𝑓  ↔  ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) )  <Q  ( ( 𝑓  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) ) ) ) | 
						
							| 28 | 4 8 12 27 | syl12anc | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P  ∧  𝐶  ∈  P )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑓  ∈  𝐴  ∧  𝑧  ∈  𝐶 ) ) )  →  ( 𝑥  <Q  𝑓  ↔  ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) )  <Q  ( ( 𝑓  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) ) ) ) | 
						
							| 29 |  | simpl1 | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P  ∧  𝐶  ∈  P )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑓  ∈  𝐴  ∧  𝑧  ∈  𝐶 ) ) )  →  𝐴  ∈  P ) | 
						
							| 30 |  | addclpr | ⊢ ( ( 𝐵  ∈  P  ∧  𝐶  ∈  P )  →  ( 𝐵  +P  𝐶 )  ∈  P ) | 
						
							| 31 | 30 | 3adant1 | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P  ∧  𝐶  ∈  P )  →  ( 𝐵  +P  𝐶 )  ∈  P ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P  ∧  𝐶  ∈  P )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑓  ∈  𝐴  ∧  𝑧  ∈  𝐶 ) ) )  →  ( 𝐵  +P  𝐶 )  ∈  P ) | 
						
							| 33 |  | mulclpr | ⊢ ( ( 𝐴  ∈  P  ∧  ( 𝐵  +P  𝐶 )  ∈  P )  →  ( 𝐴  ·P  ( 𝐵  +P  𝐶 ) )  ∈  P ) | 
						
							| 34 | 29 32 33 | syl2anc | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P  ∧  𝐶  ∈  P )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑓  ∈  𝐴  ∧  𝑧  ∈  𝐶 ) ) )  →  ( 𝐴  ·P  ( 𝐵  +P  𝐶 ) )  ∈  P ) | 
						
							| 35 |  | distrnq | ⊢ ( 𝑓  ·Q  ( 𝑦  +Q  𝑧 ) )  =  ( ( 𝑓  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) ) | 
						
							| 36 |  | simprrl | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P  ∧  𝐶  ∈  P )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑓  ∈  𝐴  ∧  𝑧  ∈  𝐶 ) ) )  →  𝑓  ∈  𝐴 ) | 
						
							| 37 |  | df-plp | ⊢  +P   =  ( 𝑢  ∈  P ,  𝑣  ∈  P  ↦  { 𝑤  ∣  ∃ 𝑔  ∈  𝑢 ∃ ℎ  ∈  𝑣 𝑤  =  ( 𝑔  +Q  ℎ ) } ) | 
						
							| 38 |  | addclnq | ⊢ ( ( 𝑔  ∈  Q  ∧  ℎ  ∈  Q )  →  ( 𝑔  +Q  ℎ )  ∈  Q ) | 
						
							| 39 | 37 38 | genpprecl | ⊢ ( ( 𝐵  ∈  P  ∧  𝐶  ∈  P )  →  ( ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐶 )  →  ( 𝑦  +Q  𝑧 )  ∈  ( 𝐵  +P  𝐶 ) ) ) | 
						
							| 40 | 39 | imp | ⊢ ( ( ( 𝐵  ∈  P  ∧  𝐶  ∈  P )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐶 ) )  →  ( 𝑦  +Q  𝑧 )  ∈  ( 𝐵  +P  𝐶 ) ) | 
						
							| 41 | 1 9 2 10 40 | syl22anc | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P  ∧  𝐶  ∈  P )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑓  ∈  𝐴  ∧  𝑧  ∈  𝐶 ) ) )  →  ( 𝑦  +Q  𝑧 )  ∈  ( 𝐵  +P  𝐶 ) ) | 
						
							| 42 |  | df-mp | ⊢  ·P   =  ( 𝑢  ∈  P ,  𝑣  ∈  P  ↦  { 𝑤  ∣  ∃ 𝑔  ∈  𝑢 ∃ ℎ  ∈  𝑣 𝑤  =  ( 𝑔  ·Q  ℎ ) } ) | 
						
							| 43 |  | mulclnq | ⊢ ( ( 𝑔  ∈  Q  ∧  ℎ  ∈  Q )  →  ( 𝑔  ·Q  ℎ )  ∈  Q ) | 
						
							| 44 | 42 43 | genpprecl | ⊢ ( ( 𝐴  ∈  P  ∧  ( 𝐵  +P  𝐶 )  ∈  P )  →  ( ( 𝑓  ∈  𝐴  ∧  ( 𝑦  +Q  𝑧 )  ∈  ( 𝐵  +P  𝐶 ) )  →  ( 𝑓  ·Q  ( 𝑦  +Q  𝑧 ) )  ∈  ( 𝐴  ·P  ( 𝐵  +P  𝐶 ) ) ) ) | 
						
							| 45 | 44 | imp | ⊢ ( ( ( 𝐴  ∈  P  ∧  ( 𝐵  +P  𝐶 )  ∈  P )  ∧  ( 𝑓  ∈  𝐴  ∧  ( 𝑦  +Q  𝑧 )  ∈  ( 𝐵  +P  𝐶 ) ) )  →  ( 𝑓  ·Q  ( 𝑦  +Q  𝑧 ) )  ∈  ( 𝐴  ·P  ( 𝐵  +P  𝐶 ) ) ) | 
						
							| 46 | 29 32 36 41 45 | syl22anc | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P  ∧  𝐶  ∈  P )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑓  ∈  𝐴  ∧  𝑧  ∈  𝐶 ) ) )  →  ( 𝑓  ·Q  ( 𝑦  +Q  𝑧 ) )  ∈  ( 𝐴  ·P  ( 𝐵  +P  𝐶 ) ) ) | 
						
							| 47 | 35 46 | eqeltrrid | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P  ∧  𝐶  ∈  P )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑓  ∈  𝐴  ∧  𝑧  ∈  𝐶 ) ) )  →  ( ( 𝑓  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) )  ∈  ( 𝐴  ·P  ( 𝐵  +P  𝐶 ) ) ) | 
						
							| 48 |  | prcdnq | ⊢ ( ( ( 𝐴  ·P  ( 𝐵  +P  𝐶 ) )  ∈  P  ∧  ( ( 𝑓  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) )  ∈  ( 𝐴  ·P  ( 𝐵  +P  𝐶 ) ) )  →  ( ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) )  <Q  ( ( 𝑓  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) )  →  ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) )  ∈  ( 𝐴  ·P  ( 𝐵  +P  𝐶 ) ) ) ) | 
						
							| 49 | 34 47 48 | syl2anc | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P  ∧  𝐶  ∈  P )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑓  ∈  𝐴  ∧  𝑧  ∈  𝐶 ) ) )  →  ( ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) )  <Q  ( ( 𝑓  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) )  →  ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) )  ∈  ( 𝐴  ·P  ( 𝐵  +P  𝐶 ) ) ) ) | 
						
							| 50 | 28 49 | sylbid | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P  ∧  𝐶  ∈  P )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑓  ∈  𝐴  ∧  𝑧  ∈  𝐶 ) ) )  →  ( 𝑥  <Q  𝑓  →  ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) )  ∈  ( 𝐴  ·P  ( 𝐵  +P  𝐶 ) ) ) ) | 
						
							| 51 |  | simpll | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑓  ∈  𝐴  ∧  𝑧  ∈  𝐶 ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 52 |  | elprnq | ⊢ ( ( 𝐴  ∈  P  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  Q ) | 
						
							| 53 | 5 51 52 | syl2an | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P  ∧  𝐶  ∈  P )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑓  ∈  𝐴  ∧  𝑧  ∈  𝐶 ) ) )  →  𝑥  ∈  Q ) | 
						
							| 54 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 55 | 14 13 15 54 17 | caovord2 | ⊢ ( 𝑧  ∈  Q  →  ( 𝑓  <Q  𝑥  ↔  ( 𝑓  ·Q  𝑧 )  <Q  ( 𝑥  ·Q  𝑧 ) ) ) | 
						
							| 56 |  | mulclnq | ⊢ ( ( 𝑥  ∈  Q  ∧  𝑦  ∈  Q )  →  ( 𝑥  ·Q  𝑦 )  ∈  Q ) | 
						
							| 57 |  | ltanq | ⊢ ( ( 𝑥  ·Q  𝑦 )  ∈  Q  →  ( ( 𝑓  ·Q  𝑧 )  <Q  ( 𝑥  ·Q  𝑧 )  ↔  ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) )  <Q  ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑥  ·Q  𝑧 ) ) ) ) | 
						
							| 58 | 56 57 | syl | ⊢ ( ( 𝑥  ∈  Q  ∧  𝑦  ∈  Q )  →  ( ( 𝑓  ·Q  𝑧 )  <Q  ( 𝑥  ·Q  𝑧 )  ↔  ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) )  <Q  ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑥  ·Q  𝑧 ) ) ) ) | 
						
							| 59 | 55 58 | sylan9bbr | ⊢ ( ( ( 𝑥  ∈  Q  ∧  𝑦  ∈  Q )  ∧  𝑧  ∈  Q )  →  ( 𝑓  <Q  𝑥  ↔  ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) )  <Q  ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑥  ·Q  𝑧 ) ) ) ) | 
						
							| 60 | 53 4 12 59 | syl21anc | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P  ∧  𝐶  ∈  P )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑓  ∈  𝐴  ∧  𝑧  ∈  𝐶 ) ) )  →  ( 𝑓  <Q  𝑥  ↔  ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) )  <Q  ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑥  ·Q  𝑧 ) ) ) ) | 
						
							| 61 |  | distrnq | ⊢ ( 𝑥  ·Q  ( 𝑦  +Q  𝑧 ) )  =  ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑥  ·Q  𝑧 ) ) | 
						
							| 62 |  | simprll | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P  ∧  𝐶  ∈  P )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑓  ∈  𝐴  ∧  𝑧  ∈  𝐶 ) ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 63 | 42 43 | genpprecl | ⊢ ( ( 𝐴  ∈  P  ∧  ( 𝐵  +P  𝐶 )  ∈  P )  →  ( ( 𝑥  ∈  𝐴  ∧  ( 𝑦  +Q  𝑧 )  ∈  ( 𝐵  +P  𝐶 ) )  →  ( 𝑥  ·Q  ( 𝑦  +Q  𝑧 ) )  ∈  ( 𝐴  ·P  ( 𝐵  +P  𝐶 ) ) ) ) | 
						
							| 64 | 63 | imp | ⊢ ( ( ( 𝐴  ∈  P  ∧  ( 𝐵  +P  𝐶 )  ∈  P )  ∧  ( 𝑥  ∈  𝐴  ∧  ( 𝑦  +Q  𝑧 )  ∈  ( 𝐵  +P  𝐶 ) ) )  →  ( 𝑥  ·Q  ( 𝑦  +Q  𝑧 ) )  ∈  ( 𝐴  ·P  ( 𝐵  +P  𝐶 ) ) ) | 
						
							| 65 | 29 32 62 41 64 | syl22anc | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P  ∧  𝐶  ∈  P )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑓  ∈  𝐴  ∧  𝑧  ∈  𝐶 ) ) )  →  ( 𝑥  ·Q  ( 𝑦  +Q  𝑧 ) )  ∈  ( 𝐴  ·P  ( 𝐵  +P  𝐶 ) ) ) | 
						
							| 66 | 61 65 | eqeltrrid | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P  ∧  𝐶  ∈  P )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑓  ∈  𝐴  ∧  𝑧  ∈  𝐶 ) ) )  →  ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑥  ·Q  𝑧 ) )  ∈  ( 𝐴  ·P  ( 𝐵  +P  𝐶 ) ) ) | 
						
							| 67 |  | prcdnq | ⊢ ( ( ( 𝐴  ·P  ( 𝐵  +P  𝐶 ) )  ∈  P  ∧  ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑥  ·Q  𝑧 ) )  ∈  ( 𝐴  ·P  ( 𝐵  +P  𝐶 ) ) )  →  ( ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) )  <Q  ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑥  ·Q  𝑧 ) )  →  ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) )  ∈  ( 𝐴  ·P  ( 𝐵  +P  𝐶 ) ) ) ) | 
						
							| 68 | 34 66 67 | syl2anc | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P  ∧  𝐶  ∈  P )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑓  ∈  𝐴  ∧  𝑧  ∈  𝐶 ) ) )  →  ( ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) )  <Q  ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑥  ·Q  𝑧 ) )  →  ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) )  ∈  ( 𝐴  ·P  ( 𝐵  +P  𝐶 ) ) ) ) | 
						
							| 69 | 60 68 | sylbid | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P  ∧  𝐶  ∈  P )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑓  ∈  𝐴  ∧  𝑧  ∈  𝐶 ) ) )  →  ( 𝑓  <Q  𝑥  →  ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) )  ∈  ( 𝐴  ·P  ( 𝐵  +P  𝐶 ) ) ) ) | 
						
							| 70 |  | ltsonq | ⊢  <Q   Or  Q | 
						
							| 71 |  | sotrieq | ⊢ ( (  <Q   Or  Q  ∧  ( 𝑥  ∈  Q  ∧  𝑓  ∈  Q ) )  →  ( 𝑥  =  𝑓  ↔  ¬  ( 𝑥  <Q  𝑓  ∨  𝑓  <Q  𝑥 ) ) ) | 
						
							| 72 | 70 71 | mpan | ⊢ ( ( 𝑥  ∈  Q  ∧  𝑓  ∈  Q )  →  ( 𝑥  =  𝑓  ↔  ¬  ( 𝑥  <Q  𝑓  ∨  𝑓  <Q  𝑥 ) ) ) | 
						
							| 73 | 53 8 72 | syl2anc | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P  ∧  𝐶  ∈  P )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑓  ∈  𝐴  ∧  𝑧  ∈  𝐶 ) ) )  →  ( 𝑥  =  𝑓  ↔  ¬  ( 𝑥  <Q  𝑓  ∨  𝑓  <Q  𝑥 ) ) ) | 
						
							| 74 |  | oveq1 | ⊢ ( 𝑥  =  𝑓  →  ( 𝑥  ·Q  𝑧 )  =  ( 𝑓  ·Q  𝑧 ) ) | 
						
							| 75 | 74 | oveq2d | ⊢ ( 𝑥  =  𝑓  →  ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑥  ·Q  𝑧 ) )  =  ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) ) ) | 
						
							| 76 | 61 75 | eqtrid | ⊢ ( 𝑥  =  𝑓  →  ( 𝑥  ·Q  ( 𝑦  +Q  𝑧 ) )  =  ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) ) ) | 
						
							| 77 | 76 | eleq1d | ⊢ ( 𝑥  =  𝑓  →  ( ( 𝑥  ·Q  ( 𝑦  +Q  𝑧 ) )  ∈  ( 𝐴  ·P  ( 𝐵  +P  𝐶 ) )  ↔  ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) )  ∈  ( 𝐴  ·P  ( 𝐵  +P  𝐶 ) ) ) ) | 
						
							| 78 | 65 77 | syl5ibcom | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P  ∧  𝐶  ∈  P )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑓  ∈  𝐴  ∧  𝑧  ∈  𝐶 ) ) )  →  ( 𝑥  =  𝑓  →  ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) )  ∈  ( 𝐴  ·P  ( 𝐵  +P  𝐶 ) ) ) ) | 
						
							| 79 | 73 78 | sylbird | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P  ∧  𝐶  ∈  P )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑓  ∈  𝐴  ∧  𝑧  ∈  𝐶 ) ) )  →  ( ¬  ( 𝑥  <Q  𝑓  ∨  𝑓  <Q  𝑥 )  →  ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) )  ∈  ( 𝐴  ·P  ( 𝐵  +P  𝐶 ) ) ) ) | 
						
							| 80 | 50 69 79 | ecase3d | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P  ∧  𝐶  ∈  P )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑓  ∈  𝐴  ∧  𝑧  ∈  𝐶 ) ) )  →  ( ( 𝑥  ·Q  𝑦 )  +Q  ( 𝑓  ·Q  𝑧 ) )  ∈  ( 𝐴  ·P  ( 𝐵  +P  𝐶 ) ) ) |