Metamath Proof Explorer


Theorem simprlr

Description: Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009)

Ref Expression
Assertion simprlr ( ( 𝜑 ∧ ( ( 𝜓𝜒 ) ∧ 𝜃 ) ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝜓𝜒 ) → 𝜒 )
2 1 ad2antrl ( ( 𝜑 ∧ ( ( 𝜓𝜒 ) ∧ 𝜃 ) ) → 𝜒 )