Metamath Proof Explorer


Theorem rexlimivv

Description: Inference from Theorem 19.23 of Margaris p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004)

Ref Expression
Hypothesis rexlimivv.1 ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝜑𝜓 ) )
Assertion rexlimivv ( ∃ 𝑥𝐴𝑦𝐵 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 rexlimivv.1 ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝜑𝜓 ) )
2 1 rexlimdva ( 𝑥𝐴 → ( ∃ 𝑦𝐵 𝜑𝜓 ) )
3 2 rexlimiv ( ∃ 𝑥𝐴𝑦𝐵 𝜑𝜓 )