Description: The union of a set of positive reals (if a positive real) is its supremum (the least upper bound). Part of Proposition 9-3.3 of Gleason p. 122. (Contributed by NM, 19-May-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | suplem2pr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelpr | |
|
2 | 1 | brel | |
3 | 2 | simpld | |
4 | ralnex | |
|
5 | ssel2 | |
|
6 | ltsopr | |
|
7 | sotric | |
|
8 | 6 7 | mpan | |
9 | 8 | con2bid | |
10 | 9 | ancoms | |
11 | ltprord | |
|
12 | 11 | orbi2d | |
13 | sspss | |
|
14 | equcom | |
|
15 | 14 | orbi2i | |
16 | orcom | |
|
17 | 13 15 16 | 3bitri | |
18 | 12 17 | bitr4di | |
19 | 10 18 | bitr3d | |
20 | 5 19 | sylan | |
21 | 20 | an32s | |
22 | 21 | ralbidva | |
23 | 4 22 | bitr3id | |
24 | unissb | |
|
25 | 23 24 | bitr4di | |
26 | ssnpss | |
|
27 | ltprord | |
|
28 | 27 | biimpd | |
29 | 2 28 | mpcom | |
30 | 26 29 | nsyl | |
31 | 25 30 | syl6bi | |
32 | 31 | con4d | |
33 | 32 | ex | |
34 | 3 33 | syl5 | |
35 | 34 | pm2.43d | |
36 | elssuni | |
|
37 | ssnpss | |
|
38 | 36 37 | syl | |
39 | 1 | brel | |
40 | ltprord | |
|
41 | 40 | biimpd | |
42 | 39 41 | mpcom | |
43 | 38 42 | nsyl | |
44 | 35 43 | jctil | |