Metamath Proof Explorer


Theorem suplem2pr

Description: The union of a set of positive reals (if a positive real) is its supremum (the least upper bound). Part of Proposition 9-3.3 of Gleason p. 122. (Contributed by NM, 19-May-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Assertion suplem2pr A𝑷yA¬A<𝑷yy<𝑷AzAy<𝑷z

Proof

Step Hyp Ref Expression
1 ltrelpr <𝑷𝑷×𝑷
2 1 brel y<𝑷Ay𝑷A𝑷
3 2 simpld y<𝑷Ay𝑷
4 ralnex zA¬y<𝑷z¬zAy<𝑷z
5 ssel2 A𝑷zAz𝑷
6 ltsopr <𝑷Or𝑷
7 sotric <𝑷Or𝑷y𝑷z𝑷y<𝑷z¬y=zz<𝑷y
8 6 7 mpan y𝑷z𝑷y<𝑷z¬y=zz<𝑷y
9 8 con2bid y𝑷z𝑷y=zz<𝑷y¬y<𝑷z
10 9 ancoms z𝑷y𝑷y=zz<𝑷y¬y<𝑷z
11 ltprord z𝑷y𝑷z<𝑷yzy
12 11 orbi2d z𝑷y𝑷y=zz<𝑷yy=zzy
13 sspss zyzyz=y
14 equcom z=yy=z
15 14 orbi2i zyz=yzyy=z
16 orcom zyy=zy=zzy
17 13 15 16 3bitri zyy=zzy
18 12 17 bitr4di z𝑷y𝑷y=zz<𝑷yzy
19 10 18 bitr3d z𝑷y𝑷¬y<𝑷zzy
20 5 19 sylan A𝑷zAy𝑷¬y<𝑷zzy
21 20 an32s A𝑷y𝑷zA¬y<𝑷zzy
22 21 ralbidva A𝑷y𝑷zA¬y<𝑷zzAzy
23 4 22 bitr3id A𝑷y𝑷¬zAy<𝑷zzAzy
24 unissb AyzAzy
25 23 24 bitr4di A𝑷y𝑷¬zAy<𝑷zAy
26 ssnpss Ay¬yA
27 ltprord y𝑷A𝑷y<𝑷AyA
28 27 biimpd y𝑷A𝑷y<𝑷AyA
29 2 28 mpcom y<𝑷AyA
30 26 29 nsyl Ay¬y<𝑷A
31 25 30 syl6bi A𝑷y𝑷¬zAy<𝑷z¬y<𝑷A
32 31 con4d A𝑷y𝑷y<𝑷AzAy<𝑷z
33 32 ex A𝑷y𝑷y<𝑷AzAy<𝑷z
34 3 33 syl5 A𝑷y<𝑷Ay<𝑷AzAy<𝑷z
35 34 pm2.43d A𝑷y<𝑷AzAy<𝑷z
36 elssuni yAyA
37 ssnpss yA¬Ay
38 36 37 syl yA¬Ay
39 1 brel A<𝑷yA𝑷y𝑷
40 ltprord A𝑷y𝑷A<𝑷yAy
41 40 biimpd A𝑷y𝑷A<𝑷yAy
42 39 41 mpcom A<𝑷yAy
43 38 42 nsyl yA¬A<𝑷y
44 35 43 jctil A𝑷yA¬A<𝑷yy<𝑷AzAy<𝑷z