Metamath Proof Explorer


Theorem ralbidva

Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 4-Mar-1997) Reduce dependencies on axioms. (Revised by Wolf Lammen, 29-Dec-2019)

Ref Expression
Hypothesis ralbidva.1 φxAψχ
Assertion ralbidva φxAψxAχ

Proof

Step Hyp Ref Expression
1 ralbidva.1 φxAψχ
2 1 pm5.74da φxAψxAχ
3 2 ralbidv2 φxAψxAχ