Metamath Proof Explorer


Theorem ralbidva

Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 4-Mar-1997) Reduce dependencies on axioms. (Revised by Wolf Lammen, 29-Dec-2019)

Ref Expression
Hypothesis ralbidva.1 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
Assertion ralbidva ( 𝜑 → ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥𝐴 𝜒 ) )

Proof

Step Hyp Ref Expression
1 ralbidva.1 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
2 1 pm5.74da ( 𝜑 → ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐴𝜒 ) ) )
3 2 ralbidv2 ( 𝜑 → ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥𝐴 𝜒 ) )