Metamath Proof Explorer


Theorem supexpr

Description: The union of a nonempty, bounded set of positive reals has a supremum. Part of Proposition 9-3.3 of Gleason p. 122. (Contributed by NM, 19-May-1996) (New usage is discouraged.)

Ref Expression
Assertion supexpr Ax𝑷yAy<𝑷xx𝑷yA¬x<𝑷yy𝑷y<𝑷xzAy<𝑷z

Proof

Step Hyp Ref Expression
1 suplem1pr Ax𝑷yAy<𝑷xA𝑷
2 ltrelpr <𝑷𝑷×𝑷
3 2 brel y<𝑷xy𝑷x𝑷
4 3 simpld y<𝑷xy𝑷
5 4 ralimi yAy<𝑷xyAy𝑷
6 dfss3 A𝑷yAy𝑷
7 5 6 sylibr yAy<𝑷xA𝑷
8 7 rexlimivw x𝑷yAy<𝑷xA𝑷
9 8 adantl Ax𝑷yAy<𝑷xA𝑷
10 suplem2pr A𝑷yA¬A<𝑷yy<𝑷AzAy<𝑷z
11 10 simpld A𝑷yA¬A<𝑷y
12 11 ralrimiv A𝑷yA¬A<𝑷y
13 10 simprd A𝑷y<𝑷AzAy<𝑷z
14 13 ralrimivw A𝑷y𝑷y<𝑷AzAy<𝑷z
15 12 14 jca A𝑷yA¬A<𝑷yy𝑷y<𝑷AzAy<𝑷z
16 9 15 syl Ax𝑷yAy<𝑷xyA¬A<𝑷yy𝑷y<𝑷AzAy<𝑷z
17 breq1 x=Ax<𝑷yA<𝑷y
18 17 notbid x=A¬x<𝑷y¬A<𝑷y
19 18 ralbidv x=AyA¬x<𝑷yyA¬A<𝑷y
20 breq2 x=Ay<𝑷xy<𝑷A
21 20 imbi1d x=Ay<𝑷xzAy<𝑷zy<𝑷AzAy<𝑷z
22 21 ralbidv x=Ay𝑷y<𝑷xzAy<𝑷zy𝑷y<𝑷AzAy<𝑷z
23 19 22 anbi12d x=AyA¬x<𝑷yy𝑷y<𝑷xzAy<𝑷zyA¬A<𝑷yy𝑷y<𝑷AzAy<𝑷z
24 23 rspcev A𝑷yA¬A<𝑷yy𝑷y<𝑷AzAy<𝑷zx𝑷yA¬x<𝑷yy𝑷y<𝑷xzAy<𝑷z
25 1 16 24 syl2anc Ax𝑷yAy<𝑷xx𝑷yA¬x<𝑷yy𝑷y<𝑷xzAy<𝑷z