Description: The union of a nonempty, bounded set of positive reals has a supremum. Part of Proposition 9-3.3 of Gleason p. 122. (Contributed by NM, 19-May-1996) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | supexpr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suplem1pr | |
|
2 | ltrelpr | |
|
3 | 2 | brel | |
4 | 3 | simpld | |
5 | 4 | ralimi | |
6 | dfss3 | |
|
7 | 5 6 | sylibr | |
8 | 7 | rexlimivw | |
9 | 8 | adantl | |
10 | suplem2pr | |
|
11 | 10 | simpld | |
12 | 11 | ralrimiv | |
13 | 10 | simprd | |
14 | 13 | ralrimivw | |
15 | 12 14 | jca | |
16 | 9 15 | syl | |
17 | breq1 | |
|
18 | 17 | notbid | |
19 | 18 | ralbidv | |
20 | breq2 | |
|
21 | 20 | imbi1d | |
22 | 21 | ralbidv | |
23 | 19 22 | anbi12d | |
24 | 23 | rspcev | |
25 | 1 16 24 | syl2anc | |