Metamath Proof Explorer


Theorem supexpr

Description: The union of a nonempty, bounded set of positive reals has a supremum. Part of Proposition 9-3.3 of Gleason p. 122. (Contributed by NM, 19-May-1996) (New usage is discouraged.)

Ref Expression
Assertion supexpr ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥P𝑦𝐴 𝑦 <P 𝑥 ) → ∃ 𝑥P ( ∀ 𝑦𝐴 ¬ 𝑥 <P 𝑦 ∧ ∀ 𝑦P ( 𝑦 <P 𝑥 → ∃ 𝑧𝐴 𝑦 <P 𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 suplem1pr ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥P𝑦𝐴 𝑦 <P 𝑥 ) → 𝐴P )
2 ltrelpr <P ⊆ ( P × P )
3 2 brel ( 𝑦 <P 𝑥 → ( 𝑦P𝑥P ) )
4 3 simpld ( 𝑦 <P 𝑥𝑦P )
5 4 ralimi ( ∀ 𝑦𝐴 𝑦 <P 𝑥 → ∀ 𝑦𝐴 𝑦P )
6 dfss3 ( 𝐴P ↔ ∀ 𝑦𝐴 𝑦P )
7 5 6 sylibr ( ∀ 𝑦𝐴 𝑦 <P 𝑥𝐴P )
8 7 rexlimivw ( ∃ 𝑥P𝑦𝐴 𝑦 <P 𝑥𝐴P )
9 8 adantl ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥P𝑦𝐴 𝑦 <P 𝑥 ) → 𝐴P )
10 suplem2pr ( 𝐴P → ( ( 𝑦𝐴 → ¬ 𝐴 <P 𝑦 ) ∧ ( 𝑦 <P 𝐴 → ∃ 𝑧𝐴 𝑦 <P 𝑧 ) ) )
11 10 simpld ( 𝐴P → ( 𝑦𝐴 → ¬ 𝐴 <P 𝑦 ) )
12 11 ralrimiv ( 𝐴P → ∀ 𝑦𝐴 ¬ 𝐴 <P 𝑦 )
13 10 simprd ( 𝐴P → ( 𝑦 <P 𝐴 → ∃ 𝑧𝐴 𝑦 <P 𝑧 ) )
14 13 ralrimivw ( 𝐴P → ∀ 𝑦P ( 𝑦 <P 𝐴 → ∃ 𝑧𝐴 𝑦 <P 𝑧 ) )
15 12 14 jca ( 𝐴P → ( ∀ 𝑦𝐴 ¬ 𝐴 <P 𝑦 ∧ ∀ 𝑦P ( 𝑦 <P 𝐴 → ∃ 𝑧𝐴 𝑦 <P 𝑧 ) ) )
16 9 15 syl ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥P𝑦𝐴 𝑦 <P 𝑥 ) → ( ∀ 𝑦𝐴 ¬ 𝐴 <P 𝑦 ∧ ∀ 𝑦P ( 𝑦 <P 𝐴 → ∃ 𝑧𝐴 𝑦 <P 𝑧 ) ) )
17 breq1 ( 𝑥 = 𝐴 → ( 𝑥 <P 𝑦 𝐴 <P 𝑦 ) )
18 17 notbid ( 𝑥 = 𝐴 → ( ¬ 𝑥 <P 𝑦 ↔ ¬ 𝐴 <P 𝑦 ) )
19 18 ralbidv ( 𝑥 = 𝐴 → ( ∀ 𝑦𝐴 ¬ 𝑥 <P 𝑦 ↔ ∀ 𝑦𝐴 ¬ 𝐴 <P 𝑦 ) )
20 breq2 ( 𝑥 = 𝐴 → ( 𝑦 <P 𝑥𝑦 <P 𝐴 ) )
21 20 imbi1d ( 𝑥 = 𝐴 → ( ( 𝑦 <P 𝑥 → ∃ 𝑧𝐴 𝑦 <P 𝑧 ) ↔ ( 𝑦 <P 𝐴 → ∃ 𝑧𝐴 𝑦 <P 𝑧 ) ) )
22 21 ralbidv ( 𝑥 = 𝐴 → ( ∀ 𝑦P ( 𝑦 <P 𝑥 → ∃ 𝑧𝐴 𝑦 <P 𝑧 ) ↔ ∀ 𝑦P ( 𝑦 <P 𝐴 → ∃ 𝑧𝐴 𝑦 <P 𝑧 ) ) )
23 19 22 anbi12d ( 𝑥 = 𝐴 → ( ( ∀ 𝑦𝐴 ¬ 𝑥 <P 𝑦 ∧ ∀ 𝑦P ( 𝑦 <P 𝑥 → ∃ 𝑧𝐴 𝑦 <P 𝑧 ) ) ↔ ( ∀ 𝑦𝐴 ¬ 𝐴 <P 𝑦 ∧ ∀ 𝑦P ( 𝑦 <P 𝐴 → ∃ 𝑧𝐴 𝑦 <P 𝑧 ) ) ) )
24 23 rspcev ( ( 𝐴P ∧ ( ∀ 𝑦𝐴 ¬ 𝐴 <P 𝑦 ∧ ∀ 𝑦P ( 𝑦 <P 𝐴 → ∃ 𝑧𝐴 𝑦 <P 𝑧 ) ) ) → ∃ 𝑥P ( ∀ 𝑦𝐴 ¬ 𝑥 <P 𝑦 ∧ ∀ 𝑦P ( 𝑦 <P 𝑥 → ∃ 𝑧𝐴 𝑦 <P 𝑧 ) ) )
25 1 16 24 syl2anc ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥P𝑦𝐴 𝑦 <P 𝑥 ) → ∃ 𝑥P ( ∀ 𝑦𝐴 ¬ 𝑥 <P 𝑦 ∧ ∀ 𝑦P ( 𝑦 <P 𝑥 → ∃ 𝑧𝐴 𝑦 <P 𝑧 ) ) )