| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltrelpr |
⊢ <P ⊆ ( P × P ) |
| 2 |
1
|
brel |
⊢ ( 𝑦 <P 𝑥 → ( 𝑦 ∈ P ∧ 𝑥 ∈ P ) ) |
| 3 |
2
|
simpld |
⊢ ( 𝑦 <P 𝑥 → 𝑦 ∈ P ) |
| 4 |
3
|
ralimi |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 → ∀ 𝑦 ∈ 𝐴 𝑦 ∈ P ) |
| 5 |
|
dfss3 |
⊢ ( 𝐴 ⊆ P ↔ ∀ 𝑦 ∈ 𝐴 𝑦 ∈ P ) |
| 6 |
4 5
|
sylibr |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 → 𝐴 ⊆ P ) |
| 7 |
6
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ P ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 → 𝐴 ⊆ P ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ P ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 ) → 𝐴 ⊆ P ) |
| 9 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝐴 ) |
| 10 |
|
ssel |
⊢ ( 𝐴 ⊆ P → ( 𝑧 ∈ 𝐴 → 𝑧 ∈ P ) ) |
| 11 |
|
prn0 |
⊢ ( 𝑧 ∈ P → 𝑧 ≠ ∅ ) |
| 12 |
|
0pss |
⊢ ( ∅ ⊊ 𝑧 ↔ 𝑧 ≠ ∅ ) |
| 13 |
11 12
|
sylibr |
⊢ ( 𝑧 ∈ P → ∅ ⊊ 𝑧 ) |
| 14 |
|
elssuni |
⊢ ( 𝑧 ∈ 𝐴 → 𝑧 ⊆ ∪ 𝐴 ) |
| 15 |
|
psssstr |
⊢ ( ( ∅ ⊊ 𝑧 ∧ 𝑧 ⊆ ∪ 𝐴 ) → ∅ ⊊ ∪ 𝐴 ) |
| 16 |
13 14 15
|
syl2an |
⊢ ( ( 𝑧 ∈ P ∧ 𝑧 ∈ 𝐴 ) → ∅ ⊊ ∪ 𝐴 ) |
| 17 |
16
|
expcom |
⊢ ( 𝑧 ∈ 𝐴 → ( 𝑧 ∈ P → ∅ ⊊ ∪ 𝐴 ) ) |
| 18 |
10 17
|
sylcom |
⊢ ( 𝐴 ⊆ P → ( 𝑧 ∈ 𝐴 → ∅ ⊊ ∪ 𝐴 ) ) |
| 19 |
18
|
exlimdv |
⊢ ( 𝐴 ⊆ P → ( ∃ 𝑧 𝑧 ∈ 𝐴 → ∅ ⊊ ∪ 𝐴 ) ) |
| 20 |
9 19
|
biimtrid |
⊢ ( 𝐴 ⊆ P → ( 𝐴 ≠ ∅ → ∅ ⊊ ∪ 𝐴 ) ) |
| 21 |
|
prpssnq |
⊢ ( 𝑥 ∈ P → 𝑥 ⊊ Q ) |
| 22 |
21
|
adantl |
⊢ ( ( 𝐴 ⊆ P ∧ 𝑥 ∈ P ) → 𝑥 ⊊ Q ) |
| 23 |
|
ltprord |
⊢ ( ( 𝑦 ∈ P ∧ 𝑥 ∈ P ) → ( 𝑦 <P 𝑥 ↔ 𝑦 ⊊ 𝑥 ) ) |
| 24 |
|
pssss |
⊢ ( 𝑦 ⊊ 𝑥 → 𝑦 ⊆ 𝑥 ) |
| 25 |
23 24
|
biimtrdi |
⊢ ( ( 𝑦 ∈ P ∧ 𝑥 ∈ P ) → ( 𝑦 <P 𝑥 → 𝑦 ⊆ 𝑥 ) ) |
| 26 |
2 25
|
mpcom |
⊢ ( 𝑦 <P 𝑥 → 𝑦 ⊆ 𝑥 ) |
| 27 |
26
|
ralimi |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 → ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ) |
| 28 |
|
unissb |
⊢ ( ∪ 𝐴 ⊆ 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ) |
| 29 |
27 28
|
sylibr |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 → ∪ 𝐴 ⊆ 𝑥 ) |
| 30 |
|
sspsstr |
⊢ ( ( ∪ 𝐴 ⊆ 𝑥 ∧ 𝑥 ⊊ Q ) → ∪ 𝐴 ⊊ Q ) |
| 31 |
30
|
expcom |
⊢ ( 𝑥 ⊊ Q → ( ∪ 𝐴 ⊆ 𝑥 → ∪ 𝐴 ⊊ Q ) ) |
| 32 |
22 29 31
|
syl2im |
⊢ ( ( 𝐴 ⊆ P ∧ 𝑥 ∈ P ) → ( ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 → ∪ 𝐴 ⊊ Q ) ) |
| 33 |
32
|
rexlimdva |
⊢ ( 𝐴 ⊆ P → ( ∃ 𝑥 ∈ P ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 → ∪ 𝐴 ⊊ Q ) ) |
| 34 |
20 33
|
anim12d |
⊢ ( 𝐴 ⊆ P → ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ P ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 ) → ( ∅ ⊊ ∪ 𝐴 ∧ ∪ 𝐴 ⊊ Q ) ) ) |
| 35 |
8 34
|
mpcom |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ P ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 ) → ( ∅ ⊊ ∪ 𝐴 ∧ ∪ 𝐴 ⊊ Q ) ) |
| 36 |
|
prcdnq |
⊢ ( ( 𝑧 ∈ P ∧ 𝑥 ∈ 𝑧 ) → ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧 ) ) |
| 37 |
36
|
ex |
⊢ ( 𝑧 ∈ P → ( 𝑥 ∈ 𝑧 → ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧 ) ) ) |
| 38 |
37
|
com3r |
⊢ ( 𝑦 <Q 𝑥 → ( 𝑧 ∈ P → ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) ) ) |
| 39 |
10 38
|
sylan9 |
⊢ ( ( 𝐴 ⊆ P ∧ 𝑦 <Q 𝑥 ) → ( 𝑧 ∈ 𝐴 → ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) ) ) |
| 40 |
39
|
reximdvai |
⊢ ( ( 𝐴 ⊆ P ∧ 𝑦 <Q 𝑥 ) → ( ∃ 𝑧 ∈ 𝐴 𝑥 ∈ 𝑧 → ∃ 𝑧 ∈ 𝐴 𝑦 ∈ 𝑧 ) ) |
| 41 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ 𝐴 ↔ ∃ 𝑧 ∈ 𝐴 𝑥 ∈ 𝑧 ) |
| 42 |
|
eluni2 |
⊢ ( 𝑦 ∈ ∪ 𝐴 ↔ ∃ 𝑧 ∈ 𝐴 𝑦 ∈ 𝑧 ) |
| 43 |
40 41 42
|
3imtr4g |
⊢ ( ( 𝐴 ⊆ P ∧ 𝑦 <Q 𝑥 ) → ( 𝑥 ∈ ∪ 𝐴 → 𝑦 ∈ ∪ 𝐴 ) ) |
| 44 |
43
|
ex |
⊢ ( 𝐴 ⊆ P → ( 𝑦 <Q 𝑥 → ( 𝑥 ∈ ∪ 𝐴 → 𝑦 ∈ ∪ 𝐴 ) ) ) |
| 45 |
44
|
com23 |
⊢ ( 𝐴 ⊆ P → ( 𝑥 ∈ ∪ 𝐴 → ( 𝑦 <Q 𝑥 → 𝑦 ∈ ∪ 𝐴 ) ) ) |
| 46 |
45
|
alrimdv |
⊢ ( 𝐴 ⊆ P → ( 𝑥 ∈ ∪ 𝐴 → ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ ∪ 𝐴 ) ) ) |
| 47 |
|
eluni |
⊢ ( 𝑥 ∈ ∪ 𝐴 ↔ ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴 ) ) |
| 48 |
|
prnmax |
⊢ ( ( 𝑧 ∈ P ∧ 𝑥 ∈ 𝑧 ) → ∃ 𝑦 ∈ 𝑧 𝑥 <Q 𝑦 ) |
| 49 |
48
|
ex |
⊢ ( 𝑧 ∈ P → ( 𝑥 ∈ 𝑧 → ∃ 𝑦 ∈ 𝑧 𝑥 <Q 𝑦 ) ) |
| 50 |
10 49
|
syl6 |
⊢ ( 𝐴 ⊆ P → ( 𝑧 ∈ 𝐴 → ( 𝑥 ∈ 𝑧 → ∃ 𝑦 ∈ 𝑧 𝑥 <Q 𝑦 ) ) ) |
| 51 |
50
|
com23 |
⊢ ( 𝐴 ⊆ P → ( 𝑥 ∈ 𝑧 → ( 𝑧 ∈ 𝐴 → ∃ 𝑦 ∈ 𝑧 𝑥 <Q 𝑦 ) ) ) |
| 52 |
51
|
imp |
⊢ ( ( 𝐴 ⊆ P ∧ 𝑥 ∈ 𝑧 ) → ( 𝑧 ∈ 𝐴 → ∃ 𝑦 ∈ 𝑧 𝑥 <Q 𝑦 ) ) |
| 53 |
|
ssrexv |
⊢ ( 𝑧 ⊆ ∪ 𝐴 → ( ∃ 𝑦 ∈ 𝑧 𝑥 <Q 𝑦 → ∃ 𝑦 ∈ ∪ 𝐴 𝑥 <Q 𝑦 ) ) |
| 54 |
14 53
|
syl |
⊢ ( 𝑧 ∈ 𝐴 → ( ∃ 𝑦 ∈ 𝑧 𝑥 <Q 𝑦 → ∃ 𝑦 ∈ ∪ 𝐴 𝑥 <Q 𝑦 ) ) |
| 55 |
52 54
|
sylcom |
⊢ ( ( 𝐴 ⊆ P ∧ 𝑥 ∈ 𝑧 ) → ( 𝑧 ∈ 𝐴 → ∃ 𝑦 ∈ ∪ 𝐴 𝑥 <Q 𝑦 ) ) |
| 56 |
55
|
expimpd |
⊢ ( 𝐴 ⊆ P → ( ( 𝑥 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴 ) → ∃ 𝑦 ∈ ∪ 𝐴 𝑥 <Q 𝑦 ) ) |
| 57 |
56
|
exlimdv |
⊢ ( 𝐴 ⊆ P → ( ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴 ) → ∃ 𝑦 ∈ ∪ 𝐴 𝑥 <Q 𝑦 ) ) |
| 58 |
47 57
|
biimtrid |
⊢ ( 𝐴 ⊆ P → ( 𝑥 ∈ ∪ 𝐴 → ∃ 𝑦 ∈ ∪ 𝐴 𝑥 <Q 𝑦 ) ) |
| 59 |
46 58
|
jcad |
⊢ ( 𝐴 ⊆ P → ( 𝑥 ∈ ∪ 𝐴 → ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ ∪ 𝐴 ) ∧ ∃ 𝑦 ∈ ∪ 𝐴 𝑥 <Q 𝑦 ) ) ) |
| 60 |
59
|
ralrimiv |
⊢ ( 𝐴 ⊆ P → ∀ 𝑥 ∈ ∪ 𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ ∪ 𝐴 ) ∧ ∃ 𝑦 ∈ ∪ 𝐴 𝑥 <Q 𝑦 ) ) |
| 61 |
8 60
|
syl |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ P ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 ) → ∀ 𝑥 ∈ ∪ 𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ ∪ 𝐴 ) ∧ ∃ 𝑦 ∈ ∪ 𝐴 𝑥 <Q 𝑦 ) ) |
| 62 |
|
elnp |
⊢ ( ∪ 𝐴 ∈ P ↔ ( ( ∅ ⊊ ∪ 𝐴 ∧ ∪ 𝐴 ⊊ Q ) ∧ ∀ 𝑥 ∈ ∪ 𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ ∪ 𝐴 ) ∧ ∃ 𝑦 ∈ ∪ 𝐴 𝑥 <Q 𝑦 ) ) ) |
| 63 |
35 61 62
|
sylanbrc |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ P ∀ 𝑦 ∈ 𝐴 𝑦 <P 𝑥 ) → ∪ 𝐴 ∈ P ) |