Metamath Proof Explorer


Theorem ssrexv

Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007)

Ref Expression
Assertion ssrexv ( 𝐴𝐵 → ( ∃ 𝑥𝐴 𝜑 → ∃ 𝑥𝐵 𝜑 ) )

Proof

Step Hyp Ref Expression
1 ssel ( 𝐴𝐵 → ( 𝑥𝐴𝑥𝐵 ) )
2 1 anim1d ( 𝐴𝐵 → ( ( 𝑥𝐴𝜑 ) → ( 𝑥𝐵𝜑 ) ) )
3 2 reximdv2 ( 𝐴𝐵 → ( ∃ 𝑥𝐴 𝜑 → ∃ 𝑥𝐵 𝜑 ) )