Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of Margaris p. 90. (Contributed by NM, 17-Sep-2003)
Ref | Expression | ||
---|---|---|---|
Hypothesis | reximdv2.1 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) ) | |
Assertion | reximdv2 | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 → ∃ 𝑥 ∈ 𝐵 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximdv2.1 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) ) | |
2 | 1 | eximdv | ⊢ ( 𝜑 → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) ) |
3 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) | |
4 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐵 𝜒 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) | |
5 | 2 3 4 | 3imtr4g | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 → ∃ 𝑥 ∈ 𝐵 𝜒 ) ) |