Metamath Proof Explorer


Theorem ltprord

Description: Positive real 'less than' in terms of proper subset. (Contributed by NM, 20-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion ltprord A𝑷B𝑷A<𝑷BAB

Proof

Step Hyp Ref Expression
1 eleq1 x=Ax𝑷A𝑷
2 1 anbi1d x=Ax𝑷y𝑷A𝑷y𝑷
3 psseq1 x=AxyAy
4 2 3 anbi12d x=Ax𝑷y𝑷xyA𝑷y𝑷Ay
5 eleq1 y=By𝑷B𝑷
6 5 anbi2d y=BA𝑷y𝑷A𝑷B𝑷
7 psseq2 y=BAyAB
8 6 7 anbi12d y=BA𝑷y𝑷AyA𝑷B𝑷AB
9 df-ltp <𝑷=xy|x𝑷y𝑷xy
10 4 8 9 brabg A𝑷B𝑷A<𝑷BA𝑷B𝑷AB
11 10 bianabs A𝑷B𝑷A<𝑷BAB