Metamath Proof Explorer


Theorem psslinpr

Description: Proper subset is a linear ordering on positive reals. Part of Proposition 9-3.3 of Gleason p. 122. (Contributed by NM, 25-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion psslinpr A𝑷B𝑷ABA=BBA

Proof

Step Hyp Ref Expression
1 elprnq A𝑷xAx𝑸
2 prub B𝑷yBx𝑸¬xBy<𝑸x
3 1 2 sylan2 B𝑷yBA𝑷xA¬xBy<𝑸x
4 prcdnq A𝑷xAy<𝑸xyA
5 4 adantl B𝑷yBA𝑷xAy<𝑸xyA
6 3 5 syld B𝑷yBA𝑷xA¬xByA
7 6 exp43 B𝑷yBA𝑷xA¬xByA
8 7 com3r A𝑷B𝑷yBxA¬xByA
9 8 imp A𝑷B𝑷yBxA¬xByA
10 9 imp4a A𝑷B𝑷yBxA¬xByA
11 10 com23 A𝑷B𝑷xA¬xByByA
12 11 alrimdv A𝑷B𝑷xA¬xByyByA
13 12 exlimdv A𝑷B𝑷xxA¬xByyByA
14 nss ¬ABxxA¬xB
15 sspss ABABA=B
16 14 15 xchnxbi ¬ABA=BxxA¬xB
17 sspss BABAB=A
18 dfss2 BAyyByA
19 17 18 bitr3i BAB=AyyByA
20 13 16 19 3imtr4g A𝑷B𝑷¬ABA=BBAB=A
21 20 orrd A𝑷B𝑷ABA=BBAB=A
22 df-3or ABA=BBAABA=BBA
23 or32 ABA=BBAABBAA=B
24 orordir ABBAA=BABA=BBAA=B
25 eqcom B=AA=B
26 25 orbi2i BAB=ABAA=B
27 26 orbi2i ABA=BBAB=AABA=BBAA=B
28 24 27 bitr4i ABBAA=BABA=BBAB=A
29 22 23 28 3bitri ABA=BBAABA=BBAB=A
30 21 29 sylibr A𝑷B𝑷ABA=BBA