Metamath Proof Explorer


Theorem nss

Description: Negation of subclass relationship. Exercise 13 of TakeutiZaring p. 18. (Contributed by NM, 25-Feb-1996) (Proof shortened by Andrew Salmon, 21-Jun-2011)

Ref Expression
Assertion nss ¬ABxxA¬xB

Proof

Step Hyp Ref Expression
1 exanali xxA¬xB¬xxAxB
2 dfss2 ABxxAxB
3 1 2 xchbinxr xxA¬xB¬AB
4 3 bicomi ¬ABxxA¬xB