Description: Negation of subclass relationship. Exercise 13 of TakeutiZaring p. 18. (Contributed by NM, 25-Feb-1996) (Proof shortened by Andrew Salmon, 21-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nss | ⊢ ( ¬ 𝐴 ⊆ 𝐵 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exanali | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ↔ ¬ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
| 2 | df-ss | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
| 3 | 1 2 | xchbinxr | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ↔ ¬ 𝐴 ⊆ 𝐵 ) |
| 4 | 3 | bicomi | ⊢ ( ¬ 𝐴 ⊆ 𝐵 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |