Description: Negation of subclass relationship. Exercise 13 of TakeutiZaring p. 18. (Contributed by NM, 25-Feb-1996) (Proof shortened by Andrew Salmon, 21-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | nss | |- ( -. A C_ B <-> E. x ( x e. A /\ -. x e. B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exanali | |- ( E. x ( x e. A /\ -. x e. B ) <-> -. A. x ( x e. A -> x e. B ) ) |
|
2 | dfss2 | |- ( A C_ B <-> A. x ( x e. A -> x e. B ) ) |
|
3 | 1 2 | xchbinxr | |- ( E. x ( x e. A /\ -. x e. B ) <-> -. A C_ B ) |
4 | 3 | bicomi | |- ( -. A C_ B <-> E. x ( x e. A /\ -. x e. B ) ) |