Metamath Proof Explorer


Theorem nss

Description: Negation of subclass relationship. Exercise 13 of TakeutiZaring p. 18. (Contributed by NM, 25-Feb-1996) (Proof shortened by Andrew Salmon, 21-Jun-2011)

Ref Expression
Assertion nss
|- ( -. A C_ B <-> E. x ( x e. A /\ -. x e. B ) )

Proof

Step Hyp Ref Expression
1 exanali
 |-  ( E. x ( x e. A /\ -. x e. B ) <-> -. A. x ( x e. A -> x e. B ) )
2 dfss2
 |-  ( A C_ B <-> A. x ( x e. A -> x e. B ) )
3 1 2 xchbinxr
 |-  ( E. x ( x e. A /\ -. x e. B ) <-> -. A C_ B )
4 3 bicomi
 |-  ( -. A C_ B <-> E. x ( x e. A /\ -. x e. B ) )