Metamath Proof Explorer


Theorem exanali

Description: A transformation of quantifiers and logical connectives. (Contributed by NM, 25-Mar-1996) (Proof shortened by Wolf Lammen, 4-Sep-2014)

Ref Expression
Assertion exanali ( ∃ 𝑥 ( 𝜑 ∧ ¬ 𝜓 ) ↔ ¬ ∀ 𝑥 ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 annim ( ( 𝜑 ∧ ¬ 𝜓 ) ↔ ¬ ( 𝜑𝜓 ) )
2 1 exbii ( ∃ 𝑥 ( 𝜑 ∧ ¬ 𝜓 ) ↔ ∃ 𝑥 ¬ ( 𝜑𝜓 ) )
3 exnal ( ∃ 𝑥 ¬ ( 𝜑𝜓 ) ↔ ¬ ∀ 𝑥 ( 𝜑𝜓 ) )
4 2 3 bitri ( ∃ 𝑥 ( 𝜑 ∧ ¬ 𝜓 ) ↔ ¬ ∀ 𝑥 ( 𝜑𝜓 ) )