Description: A transformation of quantifiers and logical connectives. (Contributed by NM, 25-Mar-1996) (Proof shortened by Wolf Lammen, 4-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | exanali | ⊢ ( ∃ 𝑥 ( 𝜑 ∧ ¬ 𝜓 ) ↔ ¬ ∀ 𝑥 ( 𝜑 → 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | annim | ⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) ↔ ¬ ( 𝜑 → 𝜓 ) ) | |
2 | 1 | exbii | ⊢ ( ∃ 𝑥 ( 𝜑 ∧ ¬ 𝜓 ) ↔ ∃ 𝑥 ¬ ( 𝜑 → 𝜓 ) ) |
3 | exnal | ⊢ ( ∃ 𝑥 ¬ ( 𝜑 → 𝜓 ) ↔ ¬ ∀ 𝑥 ( 𝜑 → 𝜓 ) ) | |
4 | 2 3 | bitri | ⊢ ( ∃ 𝑥 ( 𝜑 ∧ ¬ 𝜓 ) ↔ ¬ ∀ 𝑥 ( 𝜑 → 𝜓 ) ) |