Metamath Proof Explorer


Theorem recmulnq

Description: Relationship between reciprocal and multiplication on positive fractions. (Contributed by NM, 6-Mar-1996) (Revised by Mario Carneiro, 28-Apr-2015) (New usage is discouraged.)

Ref Expression
Assertion recmulnq A𝑸*𝑸A=BA𝑸B=1𝑸

Proof

Step Hyp Ref Expression
1 fvex *𝑸AV
2 1 a1i A𝑸*𝑸AV
3 eleq1 *𝑸A=B*𝑸AVBV
4 2 3 syl5ibcom A𝑸*𝑸A=BBV
5 id A𝑸B=1𝑸A𝑸B=1𝑸
6 1nq 1𝑸𝑸
7 5 6 eqeltrdi A𝑸B=1𝑸A𝑸B𝑸
8 mulnqf 𝑸:𝑸×𝑸𝑸
9 8 fdmi dom𝑸=𝑸×𝑸
10 0nnq ¬𝑸
11 9 10 ndmovrcl A𝑸B𝑸A𝑸B𝑸
12 7 11 syl A𝑸B=1𝑸A𝑸B𝑸
13 elex B𝑸BV
14 12 13 simpl2im A𝑸B=1𝑸BV
15 14 a1i A𝑸A𝑸B=1𝑸BV
16 oveq1 x=Ax𝑸y=A𝑸y
17 16 eqeq1d x=Ax𝑸y=1𝑸A𝑸y=1𝑸
18 oveq2 y=BA𝑸y=A𝑸B
19 18 eqeq1d y=BA𝑸y=1𝑸A𝑸B=1𝑸
20 nqerid x𝑸/𝑸x=x
21 relxp Rel𝑵×𝑵
22 elpqn x𝑸x𝑵×𝑵
23 1st2nd Rel𝑵×𝑵x𝑵×𝑵x=1stx2ndx
24 21 22 23 sylancr x𝑸x=1stx2ndx
25 24 fveq2d x𝑸/𝑸x=/𝑸1stx2ndx
26 20 25 eqtr3d x𝑸x=/𝑸1stx2ndx
27 26 oveq1d x𝑸x𝑸/𝑸2ndx1stx=/𝑸1stx2ndx𝑸/𝑸2ndx1stx
28 mulerpq /𝑸1stx2ndx𝑸/𝑸2ndx1stx=/𝑸1stx2ndx𝑝𝑸2ndx1stx
29 27 28 eqtrdi x𝑸x𝑸/𝑸2ndx1stx=/𝑸1stx2ndx𝑝𝑸2ndx1stx
30 xp1st x𝑵×𝑵1stx𝑵
31 22 30 syl x𝑸1stx𝑵
32 xp2nd x𝑵×𝑵2ndx𝑵
33 22 32 syl x𝑸2ndx𝑵
34 mulpipq 1stx𝑵2ndx𝑵2ndx𝑵1stx𝑵1stx2ndx𝑝𝑸2ndx1stx=1stx𝑵2ndx2ndx𝑵1stx
35 31 33 33 31 34 syl22anc x𝑸1stx2ndx𝑝𝑸2ndx1stx=1stx𝑵2ndx2ndx𝑵1stx
36 mulcompi 2ndx𝑵1stx=1stx𝑵2ndx
37 36 opeq2i 1stx𝑵2ndx2ndx𝑵1stx=1stx𝑵2ndx1stx𝑵2ndx
38 35 37 eqtrdi x𝑸1stx2ndx𝑝𝑸2ndx1stx=1stx𝑵2ndx1stx𝑵2ndx
39 38 fveq2d x𝑸/𝑸1stx2ndx𝑝𝑸2ndx1stx=/𝑸1stx𝑵2ndx1stx𝑵2ndx
40 mulclpi 1stx𝑵2ndx𝑵1stx𝑵2ndx𝑵
41 31 33 40 syl2anc x𝑸1stx𝑵2ndx𝑵
42 1nqenq 1stx𝑵2ndx𝑵1𝑸~𝑸1stx𝑵2ndx1stx𝑵2ndx
43 41 42 syl x𝑸1𝑸~𝑸1stx𝑵2ndx1stx𝑵2ndx
44 elpqn 1𝑸𝑸1𝑸𝑵×𝑵
45 6 44 ax-mp 1𝑸𝑵×𝑵
46 41 41 opelxpd x𝑸1stx𝑵2ndx1stx𝑵2ndx𝑵×𝑵
47 nqereq 1𝑸𝑵×𝑵1stx𝑵2ndx1stx𝑵2ndx𝑵×𝑵1𝑸~𝑸1stx𝑵2ndx1stx𝑵2ndx/𝑸1𝑸=/𝑸1stx𝑵2ndx1stx𝑵2ndx
48 45 46 47 sylancr x𝑸1𝑸~𝑸1stx𝑵2ndx1stx𝑵2ndx/𝑸1𝑸=/𝑸1stx𝑵2ndx1stx𝑵2ndx
49 43 48 mpbid x𝑸/𝑸1𝑸=/𝑸1stx𝑵2ndx1stx𝑵2ndx
50 nqerid 1𝑸𝑸/𝑸1𝑸=1𝑸
51 6 50 ax-mp /𝑸1𝑸=1𝑸
52 49 51 eqtr3di x𝑸/𝑸1stx𝑵2ndx1stx𝑵2ndx=1𝑸
53 29 39 52 3eqtrd x𝑸x𝑸/𝑸2ndx1stx=1𝑸
54 fvex /𝑸2ndx1stxV
55 oveq2 y=/𝑸2ndx1stxx𝑸y=x𝑸/𝑸2ndx1stx
56 55 eqeq1d y=/𝑸2ndx1stxx𝑸y=1𝑸x𝑸/𝑸2ndx1stx=1𝑸
57 54 56 spcev x𝑸/𝑸2ndx1stx=1𝑸yx𝑸y=1𝑸
58 53 57 syl x𝑸yx𝑸y=1𝑸
59 mulcomnq r𝑸s=s𝑸r
60 mulassnq r𝑸s𝑸t=r𝑸s𝑸t
61 mulidnq r𝑸r𝑸1𝑸=r
62 6 9 10 59 60 61 caovmo *yx𝑸y=1𝑸
63 df-eu ∃!yx𝑸y=1𝑸yx𝑸y=1𝑸*yx𝑸y=1𝑸
64 58 62 63 sylanblrc x𝑸∃!yx𝑸y=1𝑸
65 cnvimass 𝑸-11𝑸dom𝑸
66 df-rq *𝑸=𝑸-11𝑸
67 9 eqcomi 𝑸×𝑸=dom𝑸
68 65 66 67 3sstr4i *𝑸𝑸×𝑸
69 relxp Rel𝑸×𝑸
70 relss *𝑸𝑸×𝑸Rel𝑸×𝑸Rel*𝑸
71 68 69 70 mp2 Rel*𝑸
72 66 eleq2i xy*𝑸xy𝑸-11𝑸
73 ffn 𝑸:𝑸×𝑸𝑸𝑸Fn𝑸×𝑸
74 fniniseg 𝑸Fn𝑸×𝑸xy𝑸-11𝑸xy𝑸×𝑸𝑸xy=1𝑸
75 8 73 74 mp2b xy𝑸-11𝑸xy𝑸×𝑸𝑸xy=1𝑸
76 ancom xy𝑸×𝑸𝑸xy=1𝑸𝑸xy=1𝑸xy𝑸×𝑸
77 ancom x𝑸x𝑸y=1𝑸x𝑸y=1𝑸x𝑸
78 eleq1 x𝑸y=1𝑸x𝑸y𝑸1𝑸𝑸
79 6 78 mpbiri x𝑸y=1𝑸x𝑸y𝑸
80 9 10 ndmovrcl x𝑸y𝑸x𝑸y𝑸
81 79 80 syl x𝑸y=1𝑸x𝑸y𝑸
82 opelxpi x𝑸y𝑸xy𝑸×𝑸
83 81 82 syl x𝑸y=1𝑸xy𝑸×𝑸
84 81 simpld x𝑸y=1𝑸x𝑸
85 83 84 2thd x𝑸y=1𝑸xy𝑸×𝑸x𝑸
86 85 pm5.32i x𝑸y=1𝑸xy𝑸×𝑸x𝑸y=1𝑸x𝑸
87 df-ov x𝑸y=𝑸xy
88 87 eqeq1i x𝑸y=1𝑸𝑸xy=1𝑸
89 88 anbi1i x𝑸y=1𝑸xy𝑸×𝑸𝑸xy=1𝑸xy𝑸×𝑸
90 77 86 89 3bitr2ri 𝑸xy=1𝑸xy𝑸×𝑸x𝑸x𝑸y=1𝑸
91 76 90 bitri xy𝑸×𝑸𝑸xy=1𝑸x𝑸x𝑸y=1𝑸
92 72 75 91 3bitri xy*𝑸x𝑸x𝑸y=1𝑸
93 92 a1i xy*𝑸x𝑸x𝑸y=1𝑸
94 71 93 opabbi2dv *𝑸=xy|x𝑸x𝑸y=1𝑸
95 94 mptru *𝑸=xy|x𝑸x𝑸y=1𝑸
96 17 19 64 95 fvopab3g A𝑸BV*𝑸A=BA𝑸B=1𝑸
97 96 ex A𝑸BV*𝑸A=BA𝑸B=1𝑸
98 4 15 97 pm5.21ndd A𝑸*𝑸A=BA𝑸B=1𝑸