Metamath Proof Explorer


Theorem nqereq

Description: The function /Q acts as a substitute for equivalence classes, and it satisfies the fundamental requirement for equivalence representatives: the representatives are equal iff the members are equivalent. (Contributed by Mario Carneiro, 6-May-2013) (Revised by Mario Carneiro, 12-Aug-2015) (New usage is discouraged.)

Ref Expression
Assertion nqereq A𝑵×𝑵B𝑵×𝑵A~𝑸B/𝑸A=/𝑸B

Proof

Step Hyp Ref Expression
1 nqercl A𝑵×𝑵/𝑸A𝑸
2 1 3ad2ant1 A𝑵×𝑵B𝑵×𝑵A~𝑸B/𝑸A𝑸
3 nqercl B𝑵×𝑵/𝑸B𝑸
4 3 3ad2ant2 A𝑵×𝑵B𝑵×𝑵A~𝑸B/𝑸B𝑸
5 enqer ~𝑸Er𝑵×𝑵
6 5 a1i A𝑵×𝑵B𝑵×𝑵A~𝑸B~𝑸Er𝑵×𝑵
7 nqerrel A𝑵×𝑵A~𝑸/𝑸A
8 7 3ad2ant1 A𝑵×𝑵B𝑵×𝑵A~𝑸BA~𝑸/𝑸A
9 simp3 A𝑵×𝑵B𝑵×𝑵A~𝑸BA~𝑸B
10 6 8 9 ertr3d A𝑵×𝑵B𝑵×𝑵A~𝑸B/𝑸A~𝑸B
11 nqerrel B𝑵×𝑵B~𝑸/𝑸B
12 11 3ad2ant2 A𝑵×𝑵B𝑵×𝑵A~𝑸BB~𝑸/𝑸B
13 6 10 12 ertrd A𝑵×𝑵B𝑵×𝑵A~𝑸B/𝑸A~𝑸/𝑸B
14 enqeq /𝑸A𝑸/𝑸B𝑸/𝑸A~𝑸/𝑸B/𝑸A=/𝑸B
15 2 4 13 14 syl3anc A𝑵×𝑵B𝑵×𝑵A~𝑸B/𝑸A=/𝑸B
16 15 3expia A𝑵×𝑵B𝑵×𝑵A~𝑸B/𝑸A=/𝑸B
17 5 a1i A𝑵×𝑵B𝑵×𝑵/𝑸A=/𝑸B~𝑸Er𝑵×𝑵
18 7 adantr A𝑵×𝑵B𝑵×𝑵/𝑸A=/𝑸BA~𝑸/𝑸A
19 simprr A𝑵×𝑵B𝑵×𝑵/𝑸A=/𝑸B/𝑸A=/𝑸B
20 18 19 breqtrd A𝑵×𝑵B𝑵×𝑵/𝑸A=/𝑸BA~𝑸/𝑸B
21 11 ad2antrl A𝑵×𝑵B𝑵×𝑵/𝑸A=/𝑸BB~𝑸/𝑸B
22 17 20 21 ertr4d A𝑵×𝑵B𝑵×𝑵/𝑸A=/𝑸BA~𝑸B
23 22 expr A𝑵×𝑵B𝑵×𝑵/𝑸A=/𝑸BA~𝑸B
24 16 23 impbid A𝑵×𝑵B𝑵×𝑵A~𝑸B/𝑸A=/𝑸B