| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nqercl | ⊢ ( 𝐴  ∈  ( N  ×  N )  →  ( [Q] ‘ 𝐴 )  ∈  Q ) | 
						
							| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ( N  ×  N )  ∧  𝐵  ∈  ( N  ×  N )  ∧  𝐴  ~Q  𝐵 )  →  ( [Q] ‘ 𝐴 )  ∈  Q ) | 
						
							| 3 |  | nqercl | ⊢ ( 𝐵  ∈  ( N  ×  N )  →  ( [Q] ‘ 𝐵 )  ∈  Q ) | 
						
							| 4 | 3 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ( N  ×  N )  ∧  𝐵  ∈  ( N  ×  N )  ∧  𝐴  ~Q  𝐵 )  →  ( [Q] ‘ 𝐵 )  ∈  Q ) | 
						
							| 5 |  | enqer | ⊢  ~Q   Er  ( N  ×  N ) | 
						
							| 6 | 5 | a1i | ⊢ ( ( 𝐴  ∈  ( N  ×  N )  ∧  𝐵  ∈  ( N  ×  N )  ∧  𝐴  ~Q  𝐵 )  →   ~Q   Er  ( N  ×  N ) ) | 
						
							| 7 |  | nqerrel | ⊢ ( 𝐴  ∈  ( N  ×  N )  →  𝐴  ~Q  ( [Q] ‘ 𝐴 ) ) | 
						
							| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ( N  ×  N )  ∧  𝐵  ∈  ( N  ×  N )  ∧  𝐴  ~Q  𝐵 )  →  𝐴  ~Q  ( [Q] ‘ 𝐴 ) ) | 
						
							| 9 |  | simp3 | ⊢ ( ( 𝐴  ∈  ( N  ×  N )  ∧  𝐵  ∈  ( N  ×  N )  ∧  𝐴  ~Q  𝐵 )  →  𝐴  ~Q  𝐵 ) | 
						
							| 10 | 6 8 9 | ertr3d | ⊢ ( ( 𝐴  ∈  ( N  ×  N )  ∧  𝐵  ∈  ( N  ×  N )  ∧  𝐴  ~Q  𝐵 )  →  ( [Q] ‘ 𝐴 )  ~Q  𝐵 ) | 
						
							| 11 |  | nqerrel | ⊢ ( 𝐵  ∈  ( N  ×  N )  →  𝐵  ~Q  ( [Q] ‘ 𝐵 ) ) | 
						
							| 12 | 11 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ( N  ×  N )  ∧  𝐵  ∈  ( N  ×  N )  ∧  𝐴  ~Q  𝐵 )  →  𝐵  ~Q  ( [Q] ‘ 𝐵 ) ) | 
						
							| 13 | 6 10 12 | ertrd | ⊢ ( ( 𝐴  ∈  ( N  ×  N )  ∧  𝐵  ∈  ( N  ×  N )  ∧  𝐴  ~Q  𝐵 )  →  ( [Q] ‘ 𝐴 )  ~Q  ( [Q] ‘ 𝐵 ) ) | 
						
							| 14 |  | enqeq | ⊢ ( ( ( [Q] ‘ 𝐴 )  ∈  Q  ∧  ( [Q] ‘ 𝐵 )  ∈  Q  ∧  ( [Q] ‘ 𝐴 )  ~Q  ( [Q] ‘ 𝐵 ) )  →  ( [Q] ‘ 𝐴 )  =  ( [Q] ‘ 𝐵 ) ) | 
						
							| 15 | 2 4 13 14 | syl3anc | ⊢ ( ( 𝐴  ∈  ( N  ×  N )  ∧  𝐵  ∈  ( N  ×  N )  ∧  𝐴  ~Q  𝐵 )  →  ( [Q] ‘ 𝐴 )  =  ( [Q] ‘ 𝐵 ) ) | 
						
							| 16 | 15 | 3expia | ⊢ ( ( 𝐴  ∈  ( N  ×  N )  ∧  𝐵  ∈  ( N  ×  N ) )  →  ( 𝐴  ~Q  𝐵  →  ( [Q] ‘ 𝐴 )  =  ( [Q] ‘ 𝐵 ) ) ) | 
						
							| 17 | 5 | a1i | ⊢ ( ( 𝐴  ∈  ( N  ×  N )  ∧  ( 𝐵  ∈  ( N  ×  N )  ∧  ( [Q] ‘ 𝐴 )  =  ( [Q] ‘ 𝐵 ) ) )  →   ~Q   Er  ( N  ×  N ) ) | 
						
							| 18 | 7 | adantr | ⊢ ( ( 𝐴  ∈  ( N  ×  N )  ∧  ( 𝐵  ∈  ( N  ×  N )  ∧  ( [Q] ‘ 𝐴 )  =  ( [Q] ‘ 𝐵 ) ) )  →  𝐴  ~Q  ( [Q] ‘ 𝐴 ) ) | 
						
							| 19 |  | simprr | ⊢ ( ( 𝐴  ∈  ( N  ×  N )  ∧  ( 𝐵  ∈  ( N  ×  N )  ∧  ( [Q] ‘ 𝐴 )  =  ( [Q] ‘ 𝐵 ) ) )  →  ( [Q] ‘ 𝐴 )  =  ( [Q] ‘ 𝐵 ) ) | 
						
							| 20 | 18 19 | breqtrd | ⊢ ( ( 𝐴  ∈  ( N  ×  N )  ∧  ( 𝐵  ∈  ( N  ×  N )  ∧  ( [Q] ‘ 𝐴 )  =  ( [Q] ‘ 𝐵 ) ) )  →  𝐴  ~Q  ( [Q] ‘ 𝐵 ) ) | 
						
							| 21 | 11 | ad2antrl | ⊢ ( ( 𝐴  ∈  ( N  ×  N )  ∧  ( 𝐵  ∈  ( N  ×  N )  ∧  ( [Q] ‘ 𝐴 )  =  ( [Q] ‘ 𝐵 ) ) )  →  𝐵  ~Q  ( [Q] ‘ 𝐵 ) ) | 
						
							| 22 | 17 20 21 | ertr4d | ⊢ ( ( 𝐴  ∈  ( N  ×  N )  ∧  ( 𝐵  ∈  ( N  ×  N )  ∧  ( [Q] ‘ 𝐴 )  =  ( [Q] ‘ 𝐵 ) ) )  →  𝐴  ~Q  𝐵 ) | 
						
							| 23 | 22 | expr | ⊢ ( ( 𝐴  ∈  ( N  ×  N )  ∧  𝐵  ∈  ( N  ×  N ) )  →  ( ( [Q] ‘ 𝐴 )  =  ( [Q] ‘ 𝐵 )  →  𝐴  ~Q  𝐵 ) ) | 
						
							| 24 | 16 23 | impbid | ⊢ ( ( 𝐴  ∈  ( N  ×  N )  ∧  𝐵  ∈  ( N  ×  N ) )  →  ( 𝐴  ~Q  𝐵  ↔  ( [Q] ‘ 𝐴 )  =  ( [Q] ‘ 𝐵 ) ) ) |