Metamath Proof Explorer


Theorem enqer

Description: The equivalence relation for positive fractions is an equivalence relation. Proposition 9-2.1 of Gleason p. 117. (Contributed by NM, 27-Aug-1995) (Revised by Mario Carneiro, 6-Jul-2015) (New usage is discouraged.)

Ref Expression
Assertion enqer ~Q Er ( N × N )

Proof

Step Hyp Ref Expression
1 df-enq ~Q = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) ∧ ∃ 𝑧𝑤𝑣𝑢 ( ( 𝑥 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝑦 = ⟨ 𝑣 , 𝑢 ⟩ ) ∧ ( 𝑧 ·N 𝑢 ) = ( 𝑤 ·N 𝑣 ) ) ) }
2 mulcompi ( 𝑥 ·N 𝑦 ) = ( 𝑦 ·N 𝑥 )
3 mulclpi ( ( 𝑥N𝑦N ) → ( 𝑥 ·N 𝑦 ) ∈ N )
4 mulasspi ( ( 𝑥 ·N 𝑦 ) ·N 𝑧 ) = ( 𝑥 ·N ( 𝑦 ·N 𝑧 ) )
5 mulcanpi ( ( 𝑥N𝑦N ) → ( ( 𝑥 ·N 𝑦 ) = ( 𝑥 ·N 𝑧 ) ↔ 𝑦 = 𝑧 ) )
6 5 biimpd ( ( 𝑥N𝑦N ) → ( ( 𝑥 ·N 𝑦 ) = ( 𝑥 ·N 𝑧 ) → 𝑦 = 𝑧 ) )
7 1 2 3 4 6 ecopover ~Q Er ( N × N )