Metamath Proof Explorer


Theorem enqer

Description: The equivalence relation for positive fractions is an equivalence relation. Proposition 9-2.1 of Gleason p. 117. (Contributed by NM, 27-Aug-1995) (Revised by Mario Carneiro, 6-Jul-2015) (New usage is discouraged.)

Ref Expression
Assertion enqer
|- ~Q Er ( N. X. N. )

Proof

Step Hyp Ref Expression
1 df-enq
 |-  ~Q = { <. x , y >. | ( ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ( z .N u ) = ( w .N v ) ) ) }
2 mulcompi
 |-  ( x .N y ) = ( y .N x )
3 mulclpi
 |-  ( ( x e. N. /\ y e. N. ) -> ( x .N y ) e. N. )
4 mulasspi
 |-  ( ( x .N y ) .N z ) = ( x .N ( y .N z ) )
5 mulcanpi
 |-  ( ( x e. N. /\ y e. N. ) -> ( ( x .N y ) = ( x .N z ) <-> y = z ) )
6 5 biimpd
 |-  ( ( x e. N. /\ y e. N. ) -> ( ( x .N y ) = ( x .N z ) -> y = z ) )
7 1 2 3 4 6 ecopover
 |-  ~Q Er ( N. X. N. )