Metamath Proof Explorer


Theorem enqeq

Description: Corollary of nqereu : if two fractions are both reduced and equivalent, then they are equal. (Contributed by Mario Carneiro, 6-May-2013) (New usage is discouraged.)

Ref Expression
Assertion enqeq A 𝑸 B 𝑸 A ~ 𝑸 B A = B

Proof

Step Hyp Ref Expression
1 3simpa A 𝑸 B 𝑸 A ~ 𝑸 B A 𝑸 B 𝑸
2 elpqn B 𝑸 B 𝑵 × 𝑵
3 2 3ad2ant2 A 𝑸 B 𝑸 A ~ 𝑸 B B 𝑵 × 𝑵
4 nqereu B 𝑵 × 𝑵 ∃! x 𝑸 x ~ 𝑸 B
5 reurmo ∃! x 𝑸 x ~ 𝑸 B * x 𝑸 x ~ 𝑸 B
6 3 4 5 3syl A 𝑸 B 𝑸 A ~ 𝑸 B * x 𝑸 x ~ 𝑸 B
7 df-rmo * x 𝑸 x ~ 𝑸 B * x x 𝑸 x ~ 𝑸 B
8 6 7 sylib A 𝑸 B 𝑸 A ~ 𝑸 B * x x 𝑸 x ~ 𝑸 B
9 3simpb A 𝑸 B 𝑸 A ~ 𝑸 B A 𝑸 A ~ 𝑸 B
10 simp2 A 𝑸 B 𝑸 A ~ 𝑸 B B 𝑸
11 enqer ~ 𝑸 Er 𝑵 × 𝑵
12 11 a1i A 𝑸 B 𝑸 A ~ 𝑸 B ~ 𝑸 Er 𝑵 × 𝑵
13 12 3 erref A 𝑸 B 𝑸 A ~ 𝑸 B B ~ 𝑸 B
14 10 13 jca A 𝑸 B 𝑸 A ~ 𝑸 B B 𝑸 B ~ 𝑸 B
15 eleq1 x = A x 𝑸 A 𝑸
16 breq1 x = A x ~ 𝑸 B A ~ 𝑸 B
17 15 16 anbi12d x = A x 𝑸 x ~ 𝑸 B A 𝑸 A ~ 𝑸 B
18 eleq1 x = B x 𝑸 B 𝑸
19 breq1 x = B x ~ 𝑸 B B ~ 𝑸 B
20 18 19 anbi12d x = B x 𝑸 x ~ 𝑸 B B 𝑸 B ~ 𝑸 B
21 17 20 moi A 𝑸 B 𝑸 * x x 𝑸 x ~ 𝑸 B A 𝑸 A ~ 𝑸 B B 𝑸 B ~ 𝑸 B A = B
22 1 8 9 14 21 syl112anc A 𝑸 B 𝑸 A ~ 𝑸 B A = B