Metamath Proof Explorer


Theorem enqeq

Description: Corollary of nqereu : if two fractions are both reduced and equivalent, then they are equal. (Contributed by Mario Carneiro, 6-May-2013) (New usage is discouraged.)

Ref Expression
Assertion enqeq A𝑸B𝑸A~𝑸BA=B

Proof

Step Hyp Ref Expression
1 3simpa A𝑸B𝑸A~𝑸BA𝑸B𝑸
2 elpqn B𝑸B𝑵×𝑵
3 2 3ad2ant2 A𝑸B𝑸A~𝑸BB𝑵×𝑵
4 nqereu B𝑵×𝑵∃!x𝑸x~𝑸B
5 reurmo ∃!x𝑸x~𝑸B*x𝑸x~𝑸B
6 3 4 5 3syl A𝑸B𝑸A~𝑸B*x𝑸x~𝑸B
7 df-rmo *x𝑸x~𝑸B*xx𝑸x~𝑸B
8 6 7 sylib A𝑸B𝑸A~𝑸B*xx𝑸x~𝑸B
9 3simpb A𝑸B𝑸A~𝑸BA𝑸A~𝑸B
10 simp2 A𝑸B𝑸A~𝑸BB𝑸
11 enqer ~𝑸Er𝑵×𝑵
12 11 a1i A𝑸B𝑸A~𝑸B~𝑸Er𝑵×𝑵
13 12 3 erref A𝑸B𝑸A~𝑸BB~𝑸B
14 10 13 jca A𝑸B𝑸A~𝑸BB𝑸B~𝑸B
15 eleq1 x=Ax𝑸A𝑸
16 breq1 x=Ax~𝑸BA~𝑸B
17 15 16 anbi12d x=Ax𝑸x~𝑸BA𝑸A~𝑸B
18 eleq1 x=Bx𝑸B𝑸
19 breq1 x=Bx~𝑸BB~𝑸B
20 18 19 anbi12d x=Bx𝑸x~𝑸BB𝑸B~𝑸B
21 17 20 moi A𝑸B𝑸*xx𝑸x~𝑸BA𝑸A~𝑸BB𝑸B~𝑸BA=B
22 1 8 9 14 21 syl112anc A𝑸B𝑸A~𝑸BA=B