Metamath Proof Explorer


Theorem ertr4d

Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypotheses ersymb.1 φRErX
ertr4d.5 φARB
ertr4d.6 φCRB
Assertion ertr4d φARC

Proof

Step Hyp Ref Expression
1 ersymb.1 φRErX
2 ertr4d.5 φARB
3 ertr4d.6 φCRB
4 1 3 ersym φBRC
5 1 2 4 ertrd φARC