Metamath Proof Explorer
Description: A transitivity relation for equivalences. (Contributed by Mario
Carneiro, 9-Jul-2014)
|
|
Ref |
Expression |
|
Hypotheses |
ersymb.1 |
|- ( ph -> R Er X ) |
|
|
ertr4d.5 |
|- ( ph -> A R B ) |
|
|
ertr4d.6 |
|- ( ph -> C R B ) |
|
Assertion |
ertr4d |
|- ( ph -> A R C ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ersymb.1 |
|- ( ph -> R Er X ) |
2 |
|
ertr4d.5 |
|- ( ph -> A R B ) |
3 |
|
ertr4d.6 |
|- ( ph -> C R B ) |
4 |
1 3
|
ersym |
|- ( ph -> B R C ) |
5 |
1 2 4
|
ertrd |
|- ( ph -> A R C ) |