Metamath Proof Explorer


Theorem ordpinq

Description: Ordering of positive fractions in terms of positive integers. (Contributed by NM, 13-Feb-1996) (Revised by Mario Carneiro, 28-Apr-2013) (New usage is discouraged.)

Ref Expression
Assertion ordpinq A𝑸B𝑸A<𝑸B1stA𝑵2ndB<𝑵1stB𝑵2ndA

Proof

Step Hyp Ref Expression
1 brinxp A𝑸B𝑸A<𝑝𝑸BA<𝑝𝑸𝑸×𝑸B
2 df-ltnq <𝑸=<𝑝𝑸𝑸×𝑸
3 2 breqi A<𝑸BA<𝑝𝑸𝑸×𝑸B
4 1 3 bitr4di A𝑸B𝑸A<𝑝𝑸BA<𝑸B
5 relxp Rel𝑵×𝑵
6 elpqn A𝑸A𝑵×𝑵
7 1st2nd Rel𝑵×𝑵A𝑵×𝑵A=1stA2ndA
8 5 6 7 sylancr A𝑸A=1stA2ndA
9 elpqn B𝑸B𝑵×𝑵
10 1st2nd Rel𝑵×𝑵B𝑵×𝑵B=1stB2ndB
11 5 9 10 sylancr B𝑸B=1stB2ndB
12 8 11 breqan12d A𝑸B𝑸A<𝑝𝑸B1stA2ndA<𝑝𝑸1stB2ndB
13 ordpipq 1stA2ndA<𝑝𝑸1stB2ndB1stA𝑵2ndB<𝑵1stB𝑵2ndA
14 12 13 bitrdi A𝑸B𝑸A<𝑝𝑸B1stA𝑵2ndB<𝑵1stB𝑵2ndA
15 4 14 bitr3d A𝑸B𝑸A<𝑸B1stA𝑵2ndB<𝑵1stB𝑵2ndA