Metamath Proof Explorer


Theorem nsmallnq

Description: The is no smallest positive fraction. (Contributed by NM, 26-Apr-1996) (Revised by Mario Carneiro, 10-May-2013) (New usage is discouraged.)

Ref Expression
Assertion nsmallnq A𝑸xx<𝑸A

Proof

Step Hyp Ref Expression
1 halfnq A𝑸xx+𝑸x=A
2 eleq1a A𝑸x+𝑸x=Ax+𝑸x𝑸
3 addnqf +𝑸:𝑸×𝑸𝑸
4 3 fdmi dom+𝑸=𝑸×𝑸
5 0nnq ¬𝑸
6 4 5 ndmovrcl x+𝑸x𝑸x𝑸x𝑸
7 ltaddnq x𝑸x𝑸x<𝑸x+𝑸x
8 6 7 syl x+𝑸x𝑸x<𝑸x+𝑸x
9 2 8 syl6 A𝑸x+𝑸x=Ax<𝑸x+𝑸x
10 breq2 x+𝑸x=Ax<𝑸x+𝑸xx<𝑸A
11 9 10 mpbidi A𝑸x+𝑸x=Ax<𝑸A
12 11 eximdv A𝑸xx+𝑸x=Axx<𝑸A
13 1 12 mpd A𝑸xx<𝑸A