Metamath Proof Explorer


Theorem ltbtwnnq

Description: There exists a number between any two positive fractions. Proposition 9-2.6(i) of Gleason p. 120. (Contributed by NM, 17-Mar-1996) (Revised by Mario Carneiro, 10-May-2013) (New usage is discouraged.)

Ref Expression
Assertion ltbtwnnq A<𝑸BxA<𝑸xx<𝑸B

Proof

Step Hyp Ref Expression
1 ltrelnq <𝑸𝑸×𝑸
2 1 brel A<𝑸BA𝑸B𝑸
3 2 simprd A<𝑸BB𝑸
4 ltexnq B𝑸A<𝑸ByA+𝑸y=B
5 eleq1 A+𝑸y=BA+𝑸y𝑸B𝑸
6 5 biimparc B𝑸A+𝑸y=BA+𝑸y𝑸
7 addnqf +𝑸:𝑸×𝑸𝑸
8 7 fdmi dom+𝑸=𝑸×𝑸
9 0nnq ¬𝑸
10 8 9 ndmovrcl A+𝑸y𝑸A𝑸y𝑸
11 6 10 syl B𝑸A+𝑸y=BA𝑸y𝑸
12 11 simprd B𝑸A+𝑸y=By𝑸
13 nsmallnq y𝑸zz<𝑸y
14 11 simpld B𝑸A+𝑸y=BA𝑸
15 1 brel z<𝑸yz𝑸y𝑸
16 15 simpld z<𝑸yz𝑸
17 ltaddnq A𝑸z𝑸A<𝑸A+𝑸z
18 14 16 17 syl2an B𝑸A+𝑸y=Bz<𝑸yA<𝑸A+𝑸z
19 ltanq A𝑸z<𝑸yA+𝑸z<𝑸A+𝑸y
20 19 biimpa A𝑸z<𝑸yA+𝑸z<𝑸A+𝑸y
21 14 20 sylan B𝑸A+𝑸y=Bz<𝑸yA+𝑸z<𝑸A+𝑸y
22 simplr B𝑸A+𝑸y=Bz<𝑸yA+𝑸y=B
23 21 22 breqtrd B𝑸A+𝑸y=Bz<𝑸yA+𝑸z<𝑸B
24 ovex A+𝑸zV
25 breq2 x=A+𝑸zA<𝑸xA<𝑸A+𝑸z
26 breq1 x=A+𝑸zx<𝑸BA+𝑸z<𝑸B
27 25 26 anbi12d x=A+𝑸zA<𝑸xx<𝑸BA<𝑸A+𝑸zA+𝑸z<𝑸B
28 24 27 spcev A<𝑸A+𝑸zA+𝑸z<𝑸BxA<𝑸xx<𝑸B
29 18 23 28 syl2anc B𝑸A+𝑸y=Bz<𝑸yxA<𝑸xx<𝑸B
30 29 ex B𝑸A+𝑸y=Bz<𝑸yxA<𝑸xx<𝑸B
31 30 exlimdv B𝑸A+𝑸y=Bzz<𝑸yxA<𝑸xx<𝑸B
32 13 31 syl5 B𝑸A+𝑸y=By𝑸xA<𝑸xx<𝑸B
33 12 32 mpd B𝑸A+𝑸y=BxA<𝑸xx<𝑸B
34 33 ex B𝑸A+𝑸y=BxA<𝑸xx<𝑸B
35 34 exlimdv B𝑸yA+𝑸y=BxA<𝑸xx<𝑸B
36 4 35 sylbid B𝑸A<𝑸BxA<𝑸xx<𝑸B
37 3 36 mpcom A<𝑸BxA<𝑸xx<𝑸B
38 ltsonq <𝑸Or𝑸
39 38 1 sotri A<𝑸xx<𝑸BA<𝑸B
40 39 exlimiv xA<𝑸xx<𝑸BA<𝑸B
41 37 40 impbii A<𝑸BxA<𝑸xx<𝑸B