Metamath Proof Explorer


Theorem addnqf

Description: Domain of addition on positive fractions. (Contributed by NM, 24-Aug-1995) (Revised by Mario Carneiro, 10-Jul-2014) (New usage is discouraged.)

Ref Expression
Assertion addnqf +𝑸:𝑸×𝑸𝑸

Proof

Step Hyp Ref Expression
1 nqerf /𝑸:𝑵×𝑵𝑸
2 addpqf +𝑝𝑸:𝑵×𝑵×𝑵×𝑵𝑵×𝑵
3 fco /𝑸:𝑵×𝑵𝑸+𝑝𝑸:𝑵×𝑵×𝑵×𝑵𝑵×𝑵/𝑸+𝑝𝑸:𝑵×𝑵×𝑵×𝑵𝑸
4 1 2 3 mp2an /𝑸+𝑝𝑸:𝑵×𝑵×𝑵×𝑵𝑸
5 elpqn x𝑸x𝑵×𝑵
6 5 ssriv 𝑸𝑵×𝑵
7 xpss12 𝑸𝑵×𝑵𝑸𝑵×𝑵𝑸×𝑸𝑵×𝑵×𝑵×𝑵
8 6 6 7 mp2an 𝑸×𝑸𝑵×𝑵×𝑵×𝑵
9 fssres /𝑸+𝑝𝑸:𝑵×𝑵×𝑵×𝑵𝑸𝑸×𝑸𝑵×𝑵×𝑵×𝑵/𝑸+𝑝𝑸𝑸×𝑸:𝑸×𝑸𝑸
10 4 8 9 mp2an /𝑸+𝑝𝑸𝑸×𝑸:𝑸×𝑸𝑸
11 df-plq +𝑸=/𝑸+𝑝𝑸𝑸×𝑸
12 11 feq1i +𝑸:𝑸×𝑸𝑸/𝑸+𝑝𝑸𝑸×𝑸:𝑸×𝑸𝑸
13 10 12 mpbir +𝑸:𝑸×𝑸𝑸