Metamath Proof Explorer


Theorem xpss12

Description: Subset theorem for Cartesian product. Generalization of Theorem 101 of Suppes p. 52. (Contributed by NM, 26-Aug-1995) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion xpss12 ABCDA×CB×D

Proof

Step Hyp Ref Expression
1 ssel ABxAxB
2 ssel CDyCyD
3 1 2 im2anan9 ABCDxAyCxByD
4 3 ssopab2dv ABCDxy|xAyCxy|xByD
5 df-xp A×C=xy|xAyC
6 df-xp B×D=xy|xByD
7 4 5 6 3sstr4g ABCDA×CB×D