Metamath Proof Explorer


Theorem xpss12

Description: Subset theorem for Cartesian product. Generalization of Theorem 101 of Suppes p. 52. (Contributed by NM, 26-Aug-1995) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion xpss12 A B C D A × C B × D

Proof

Step Hyp Ref Expression
1 ssel A B x A x B
2 ssel C D y C y D
3 1 2 im2anan9 A B C D x A y C x B y D
4 3 ssopab2dv A B C D x y | x A y C x y | x B y D
5 df-xp A × C = x y | x A y C
6 df-xp B × D = x y | x B y D
7 4 5 6 3sstr4g A B C D A × C B × D