Metamath Proof Explorer


Theorem feq1i

Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Hypothesis feq1i.1 F=G
Assertion feq1i F:ABG:AB

Proof

Step Hyp Ref Expression
1 feq1i.1 F=G
2 feq1 F=GF:ABG:AB
3 1 2 ax-mp F:ABG:AB