Metamath Proof Explorer


Theorem feq1i

Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Hypothesis feq1i.1 𝐹 = 𝐺
Assertion feq1i ( 𝐹 : 𝐴𝐵𝐺 : 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 feq1i.1 𝐹 = 𝐺
2 feq1 ( 𝐹 = 𝐺 → ( 𝐹 : 𝐴𝐵𝐺 : 𝐴𝐵 ) )
3 1 2 ax-mp ( 𝐹 : 𝐴𝐵𝐺 : 𝐴𝐵 )