Metamath Proof Explorer


Theorem recexsr

Description: The reciprocal of a nonzero signed real exists. Part of Proposition 9-4.3 of Gleason p. 126. (Contributed by NM, 15-May-1996) (New usage is discouraged.)

Ref Expression
Assertion recexsr A𝑹A0𝑹x𝑹A𝑹x=1𝑹

Proof

Step Hyp Ref Expression
1 sqgt0sr A𝑹A0𝑹0𝑹<𝑹A𝑹A
2 mulclsr A𝑹y𝑹A𝑹y𝑹
3 mulasssr A𝑹A𝑹y=A𝑹A𝑹y
4 3 eqeq1i A𝑹A𝑹y=1𝑹A𝑹A𝑹y=1𝑹
5 oveq2 x=A𝑹yA𝑹x=A𝑹A𝑹y
6 5 eqeq1d x=A𝑹yA𝑹x=1𝑹A𝑹A𝑹y=1𝑹
7 6 rspcev A𝑹y𝑹A𝑹A𝑹y=1𝑹x𝑹A𝑹x=1𝑹
8 4 7 sylan2b A𝑹y𝑹A𝑹A𝑹y=1𝑹x𝑹A𝑹x=1𝑹
9 2 8 sylan A𝑹y𝑹A𝑹A𝑹y=1𝑹x𝑹A𝑹x=1𝑹
10 9 rexlimdva2 A𝑹y𝑹A𝑹A𝑹y=1𝑹x𝑹A𝑹x=1𝑹
11 recexsrlem 0𝑹<𝑹A𝑹Ay𝑹A𝑹A𝑹y=1𝑹
12 10 11 impel A𝑹0𝑹<𝑹A𝑹Ax𝑹A𝑹x=1𝑹
13 1 12 syldan A𝑹A0𝑹x𝑹A𝑹x=1𝑹