| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sqgt0sr |
⊢ ( ( 𝐴 ∈ R ∧ 𝐴 ≠ 0R ) → 0R <R ( 𝐴 ·R 𝐴 ) ) |
| 2 |
|
mulclsr |
⊢ ( ( 𝐴 ∈ R ∧ 𝑦 ∈ R ) → ( 𝐴 ·R 𝑦 ) ∈ R ) |
| 3 |
|
mulasssr |
⊢ ( ( 𝐴 ·R 𝐴 ) ·R 𝑦 ) = ( 𝐴 ·R ( 𝐴 ·R 𝑦 ) ) |
| 4 |
3
|
eqeq1i |
⊢ ( ( ( 𝐴 ·R 𝐴 ) ·R 𝑦 ) = 1R ↔ ( 𝐴 ·R ( 𝐴 ·R 𝑦 ) ) = 1R ) |
| 5 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝐴 ·R 𝑦 ) → ( 𝐴 ·R 𝑥 ) = ( 𝐴 ·R ( 𝐴 ·R 𝑦 ) ) ) |
| 6 |
5
|
eqeq1d |
⊢ ( 𝑥 = ( 𝐴 ·R 𝑦 ) → ( ( 𝐴 ·R 𝑥 ) = 1R ↔ ( 𝐴 ·R ( 𝐴 ·R 𝑦 ) ) = 1R ) ) |
| 7 |
6
|
rspcev |
⊢ ( ( ( 𝐴 ·R 𝑦 ) ∈ R ∧ ( 𝐴 ·R ( 𝐴 ·R 𝑦 ) ) = 1R ) → ∃ 𝑥 ∈ R ( 𝐴 ·R 𝑥 ) = 1R ) |
| 8 |
4 7
|
sylan2b |
⊢ ( ( ( 𝐴 ·R 𝑦 ) ∈ R ∧ ( ( 𝐴 ·R 𝐴 ) ·R 𝑦 ) = 1R ) → ∃ 𝑥 ∈ R ( 𝐴 ·R 𝑥 ) = 1R ) |
| 9 |
2 8
|
sylan |
⊢ ( ( ( 𝐴 ∈ R ∧ 𝑦 ∈ R ) ∧ ( ( 𝐴 ·R 𝐴 ) ·R 𝑦 ) = 1R ) → ∃ 𝑥 ∈ R ( 𝐴 ·R 𝑥 ) = 1R ) |
| 10 |
9
|
rexlimdva2 |
⊢ ( 𝐴 ∈ R → ( ∃ 𝑦 ∈ R ( ( 𝐴 ·R 𝐴 ) ·R 𝑦 ) = 1R → ∃ 𝑥 ∈ R ( 𝐴 ·R 𝑥 ) = 1R ) ) |
| 11 |
|
recexsrlem |
⊢ ( 0R <R ( 𝐴 ·R 𝐴 ) → ∃ 𝑦 ∈ R ( ( 𝐴 ·R 𝐴 ) ·R 𝑦 ) = 1R ) |
| 12 |
10 11
|
impel |
⊢ ( ( 𝐴 ∈ R ∧ 0R <R ( 𝐴 ·R 𝐴 ) ) → ∃ 𝑥 ∈ R ( 𝐴 ·R 𝑥 ) = 1R ) |
| 13 |
1 12
|
syldan |
⊢ ( ( 𝐴 ∈ R ∧ 𝐴 ≠ 0R ) → ∃ 𝑥 ∈ R ( 𝐴 ·R 𝑥 ) = 1R ) |