| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0r |
⊢ 0R ∈ R |
| 2 |
|
ltsosr |
⊢ <R Or R |
| 3 |
|
sotrieq |
⊢ ( ( <R Or R ∧ ( 𝐴 ∈ R ∧ 0R ∈ R ) ) → ( 𝐴 = 0R ↔ ¬ ( 𝐴 <R 0R ∨ 0R <R 𝐴 ) ) ) |
| 4 |
2 3
|
mpan |
⊢ ( ( 𝐴 ∈ R ∧ 0R ∈ R ) → ( 𝐴 = 0R ↔ ¬ ( 𝐴 <R 0R ∨ 0R <R 𝐴 ) ) ) |
| 5 |
1 4
|
mpan2 |
⊢ ( 𝐴 ∈ R → ( 𝐴 = 0R ↔ ¬ ( 𝐴 <R 0R ∨ 0R <R 𝐴 ) ) ) |
| 6 |
5
|
necon2abid |
⊢ ( 𝐴 ∈ R → ( ( 𝐴 <R 0R ∨ 0R <R 𝐴 ) ↔ 𝐴 ≠ 0R ) ) |
| 7 |
|
m1r |
⊢ -1R ∈ R |
| 8 |
|
mulclsr |
⊢ ( ( 𝐴 ∈ R ∧ -1R ∈ R ) → ( 𝐴 ·R -1R ) ∈ R ) |
| 9 |
7 8
|
mpan2 |
⊢ ( 𝐴 ∈ R → ( 𝐴 ·R -1R ) ∈ R ) |
| 10 |
|
ltasr |
⊢ ( ( 𝐴 ·R -1R ) ∈ R → ( 𝐴 <R 0R ↔ ( ( 𝐴 ·R -1R ) +R 𝐴 ) <R ( ( 𝐴 ·R -1R ) +R 0R ) ) ) |
| 11 |
9 10
|
syl |
⊢ ( 𝐴 ∈ R → ( 𝐴 <R 0R ↔ ( ( 𝐴 ·R -1R ) +R 𝐴 ) <R ( ( 𝐴 ·R -1R ) +R 0R ) ) ) |
| 12 |
|
addcomsr |
⊢ ( ( 𝐴 ·R -1R ) +R 𝐴 ) = ( 𝐴 +R ( 𝐴 ·R -1R ) ) |
| 13 |
|
pn0sr |
⊢ ( 𝐴 ∈ R → ( 𝐴 +R ( 𝐴 ·R -1R ) ) = 0R ) |
| 14 |
12 13
|
eqtrid |
⊢ ( 𝐴 ∈ R → ( ( 𝐴 ·R -1R ) +R 𝐴 ) = 0R ) |
| 15 |
|
0idsr |
⊢ ( ( 𝐴 ·R -1R ) ∈ R → ( ( 𝐴 ·R -1R ) +R 0R ) = ( 𝐴 ·R -1R ) ) |
| 16 |
9 15
|
syl |
⊢ ( 𝐴 ∈ R → ( ( 𝐴 ·R -1R ) +R 0R ) = ( 𝐴 ·R -1R ) ) |
| 17 |
14 16
|
breq12d |
⊢ ( 𝐴 ∈ R → ( ( ( 𝐴 ·R -1R ) +R 𝐴 ) <R ( ( 𝐴 ·R -1R ) +R 0R ) ↔ 0R <R ( 𝐴 ·R -1R ) ) ) |
| 18 |
11 17
|
bitrd |
⊢ ( 𝐴 ∈ R → ( 𝐴 <R 0R ↔ 0R <R ( 𝐴 ·R -1R ) ) ) |
| 19 |
|
mulgt0sr |
⊢ ( ( 0R <R ( 𝐴 ·R -1R ) ∧ 0R <R ( 𝐴 ·R -1R ) ) → 0R <R ( ( 𝐴 ·R -1R ) ·R ( 𝐴 ·R -1R ) ) ) |
| 20 |
19
|
anidms |
⊢ ( 0R <R ( 𝐴 ·R -1R ) → 0R <R ( ( 𝐴 ·R -1R ) ·R ( 𝐴 ·R -1R ) ) ) |
| 21 |
18 20
|
biimtrdi |
⊢ ( 𝐴 ∈ R → ( 𝐴 <R 0R → 0R <R ( ( 𝐴 ·R -1R ) ·R ( 𝐴 ·R -1R ) ) ) ) |
| 22 |
|
mulcomsr |
⊢ ( -1R ·R 𝐴 ) = ( 𝐴 ·R -1R ) |
| 23 |
22
|
oveq1i |
⊢ ( ( -1R ·R 𝐴 ) ·R -1R ) = ( ( 𝐴 ·R -1R ) ·R -1R ) |
| 24 |
|
mulasssr |
⊢ ( ( -1R ·R 𝐴 ) ·R -1R ) = ( -1R ·R ( 𝐴 ·R -1R ) ) |
| 25 |
|
mulasssr |
⊢ ( ( 𝐴 ·R -1R ) ·R -1R ) = ( 𝐴 ·R ( -1R ·R -1R ) ) |
| 26 |
23 24 25
|
3eqtr3i |
⊢ ( -1R ·R ( 𝐴 ·R -1R ) ) = ( 𝐴 ·R ( -1R ·R -1R ) ) |
| 27 |
|
m1m1sr |
⊢ ( -1R ·R -1R ) = 1R |
| 28 |
27
|
oveq2i |
⊢ ( 𝐴 ·R ( -1R ·R -1R ) ) = ( 𝐴 ·R 1R ) |
| 29 |
26 28
|
eqtri |
⊢ ( -1R ·R ( 𝐴 ·R -1R ) ) = ( 𝐴 ·R 1R ) |
| 30 |
29
|
oveq2i |
⊢ ( 𝐴 ·R ( -1R ·R ( 𝐴 ·R -1R ) ) ) = ( 𝐴 ·R ( 𝐴 ·R 1R ) ) |
| 31 |
|
mulasssr |
⊢ ( ( 𝐴 ·R -1R ) ·R ( 𝐴 ·R -1R ) ) = ( 𝐴 ·R ( -1R ·R ( 𝐴 ·R -1R ) ) ) |
| 32 |
|
mulasssr |
⊢ ( ( 𝐴 ·R 𝐴 ) ·R 1R ) = ( 𝐴 ·R ( 𝐴 ·R 1R ) ) |
| 33 |
30 31 32
|
3eqtr4i |
⊢ ( ( 𝐴 ·R -1R ) ·R ( 𝐴 ·R -1R ) ) = ( ( 𝐴 ·R 𝐴 ) ·R 1R ) |
| 34 |
|
mulclsr |
⊢ ( ( 𝐴 ∈ R ∧ 𝐴 ∈ R ) → ( 𝐴 ·R 𝐴 ) ∈ R ) |
| 35 |
|
1idsr |
⊢ ( ( 𝐴 ·R 𝐴 ) ∈ R → ( ( 𝐴 ·R 𝐴 ) ·R 1R ) = ( 𝐴 ·R 𝐴 ) ) |
| 36 |
34 35
|
syl |
⊢ ( ( 𝐴 ∈ R ∧ 𝐴 ∈ R ) → ( ( 𝐴 ·R 𝐴 ) ·R 1R ) = ( 𝐴 ·R 𝐴 ) ) |
| 37 |
36
|
anidms |
⊢ ( 𝐴 ∈ R → ( ( 𝐴 ·R 𝐴 ) ·R 1R ) = ( 𝐴 ·R 𝐴 ) ) |
| 38 |
33 37
|
eqtrid |
⊢ ( 𝐴 ∈ R → ( ( 𝐴 ·R -1R ) ·R ( 𝐴 ·R -1R ) ) = ( 𝐴 ·R 𝐴 ) ) |
| 39 |
38
|
breq2d |
⊢ ( 𝐴 ∈ R → ( 0R <R ( ( 𝐴 ·R -1R ) ·R ( 𝐴 ·R -1R ) ) ↔ 0R <R ( 𝐴 ·R 𝐴 ) ) ) |
| 40 |
21 39
|
sylibd |
⊢ ( 𝐴 ∈ R → ( 𝐴 <R 0R → 0R <R ( 𝐴 ·R 𝐴 ) ) ) |
| 41 |
|
mulgt0sr |
⊢ ( ( 0R <R 𝐴 ∧ 0R <R 𝐴 ) → 0R <R ( 𝐴 ·R 𝐴 ) ) |
| 42 |
41
|
anidms |
⊢ ( 0R <R 𝐴 → 0R <R ( 𝐴 ·R 𝐴 ) ) |
| 43 |
42
|
a1i |
⊢ ( 𝐴 ∈ R → ( 0R <R 𝐴 → 0R <R ( 𝐴 ·R 𝐴 ) ) ) |
| 44 |
40 43
|
jaod |
⊢ ( 𝐴 ∈ R → ( ( 𝐴 <R 0R ∨ 0R <R 𝐴 ) → 0R <R ( 𝐴 ·R 𝐴 ) ) ) |
| 45 |
6 44
|
sylbird |
⊢ ( 𝐴 ∈ R → ( 𝐴 ≠ 0R → 0R <R ( 𝐴 ·R 𝐴 ) ) ) |
| 46 |
45
|
imp |
⊢ ( ( 𝐴 ∈ R ∧ 𝐴 ≠ 0R ) → 0R <R ( 𝐴 ·R 𝐴 ) ) |