| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0r |
|- 0R e. R. |
| 2 |
|
ltsosr |
|- |
| 3 |
|
sotrieq |
|- ( ( ( A = 0R <-> -. ( A |
| 4 |
2 3
|
mpan |
|- ( ( A e. R. /\ 0R e. R. ) -> ( A = 0R <-> -. ( A |
| 5 |
1 4
|
mpan2 |
|- ( A e. R. -> ( A = 0R <-> -. ( A |
| 6 |
5
|
necon2abid |
|- ( A e. R. -> ( ( A A =/= 0R ) ) |
| 7 |
|
m1r |
|- -1R e. R. |
| 8 |
|
mulclsr |
|- ( ( A e. R. /\ -1R e. R. ) -> ( A .R -1R ) e. R. ) |
| 9 |
7 8
|
mpan2 |
|- ( A e. R. -> ( A .R -1R ) e. R. ) |
| 10 |
|
ltasr |
|- ( ( A .R -1R ) e. R. -> ( A ( ( A .R -1R ) +R A ) |
| 11 |
9 10
|
syl |
|- ( A e. R. -> ( A ( ( A .R -1R ) +R A ) |
| 12 |
|
addcomsr |
|- ( ( A .R -1R ) +R A ) = ( A +R ( A .R -1R ) ) |
| 13 |
|
pn0sr |
|- ( A e. R. -> ( A +R ( A .R -1R ) ) = 0R ) |
| 14 |
12 13
|
eqtrid |
|- ( A e. R. -> ( ( A .R -1R ) +R A ) = 0R ) |
| 15 |
|
0idsr |
|- ( ( A .R -1R ) e. R. -> ( ( A .R -1R ) +R 0R ) = ( A .R -1R ) ) |
| 16 |
9 15
|
syl |
|- ( A e. R. -> ( ( A .R -1R ) +R 0R ) = ( A .R -1R ) ) |
| 17 |
14 16
|
breq12d |
|- ( A e. R. -> ( ( ( A .R -1R ) +R A ) 0R |
| 18 |
11 17
|
bitrd |
|- ( A e. R. -> ( A 0R |
| 19 |
|
mulgt0sr |
|- ( ( 0R 0R |
| 20 |
19
|
anidms |
|- ( 0R 0R |
| 21 |
18 20
|
biimtrdi |
|- ( A e. R. -> ( A 0R |
| 22 |
|
mulcomsr |
|- ( -1R .R A ) = ( A .R -1R ) |
| 23 |
22
|
oveq1i |
|- ( ( -1R .R A ) .R -1R ) = ( ( A .R -1R ) .R -1R ) |
| 24 |
|
mulasssr |
|- ( ( -1R .R A ) .R -1R ) = ( -1R .R ( A .R -1R ) ) |
| 25 |
|
mulasssr |
|- ( ( A .R -1R ) .R -1R ) = ( A .R ( -1R .R -1R ) ) |
| 26 |
23 24 25
|
3eqtr3i |
|- ( -1R .R ( A .R -1R ) ) = ( A .R ( -1R .R -1R ) ) |
| 27 |
|
m1m1sr |
|- ( -1R .R -1R ) = 1R |
| 28 |
27
|
oveq2i |
|- ( A .R ( -1R .R -1R ) ) = ( A .R 1R ) |
| 29 |
26 28
|
eqtri |
|- ( -1R .R ( A .R -1R ) ) = ( A .R 1R ) |
| 30 |
29
|
oveq2i |
|- ( A .R ( -1R .R ( A .R -1R ) ) ) = ( A .R ( A .R 1R ) ) |
| 31 |
|
mulasssr |
|- ( ( A .R -1R ) .R ( A .R -1R ) ) = ( A .R ( -1R .R ( A .R -1R ) ) ) |
| 32 |
|
mulasssr |
|- ( ( A .R A ) .R 1R ) = ( A .R ( A .R 1R ) ) |
| 33 |
30 31 32
|
3eqtr4i |
|- ( ( A .R -1R ) .R ( A .R -1R ) ) = ( ( A .R A ) .R 1R ) |
| 34 |
|
mulclsr |
|- ( ( A e. R. /\ A e. R. ) -> ( A .R A ) e. R. ) |
| 35 |
|
1idsr |
|- ( ( A .R A ) e. R. -> ( ( A .R A ) .R 1R ) = ( A .R A ) ) |
| 36 |
34 35
|
syl |
|- ( ( A e. R. /\ A e. R. ) -> ( ( A .R A ) .R 1R ) = ( A .R A ) ) |
| 37 |
36
|
anidms |
|- ( A e. R. -> ( ( A .R A ) .R 1R ) = ( A .R A ) ) |
| 38 |
33 37
|
eqtrid |
|- ( A e. R. -> ( ( A .R -1R ) .R ( A .R -1R ) ) = ( A .R A ) ) |
| 39 |
38
|
breq2d |
|- ( A e. R. -> ( 0R 0R |
| 40 |
21 39
|
sylibd |
|- ( A e. R. -> ( A 0R |
| 41 |
|
mulgt0sr |
|- ( ( 0R 0R |
| 42 |
41
|
anidms |
|- ( 0R 0R |
| 43 |
42
|
a1i |
|- ( A e. R. -> ( 0R 0R |
| 44 |
40 43
|
jaod |
|- ( A e. R. -> ( ( A 0R |
| 45 |
6 44
|
sylbird |
|- ( A e. R. -> ( A =/= 0R -> 0R |
| 46 |
45
|
imp |
|- ( ( A e. R. /\ A =/= 0R ) -> 0R |