Metamath Proof Explorer


Theorem sqgt0sr

Description: The square of a nonzero signed real is positive. (Contributed by NM, 14-May-1996) (New usage is discouraged.)

Ref Expression
Assertion sqgt0sr
|- ( ( A e. R. /\ A =/= 0R ) -> 0R 

Proof

Step Hyp Ref Expression
1 0r
 |-  0R e. R.
2 ltsosr
 |-  
3 sotrieq
 |-  ( (  ( A = 0R <-> -. ( A 
4 2 3 mpan
 |-  ( ( A e. R. /\ 0R e. R. ) -> ( A = 0R <-> -. ( A 
5 1 4 mpan2
 |-  ( A e. R. -> ( A = 0R <-> -. ( A 
6 5 necon2abid
 |-  ( A e. R. -> ( ( A  A =/= 0R ) )
7 m1r
 |-  -1R e. R.
8 mulclsr
 |-  ( ( A e. R. /\ -1R e. R. ) -> ( A .R -1R ) e. R. )
9 7 8 mpan2
 |-  ( A e. R. -> ( A .R -1R ) e. R. )
10 ltasr
 |-  ( ( A .R -1R ) e. R. -> ( A  ( ( A .R -1R ) +R A ) 
11 9 10 syl
 |-  ( A e. R. -> ( A  ( ( A .R -1R ) +R A ) 
12 addcomsr
 |-  ( ( A .R -1R ) +R A ) = ( A +R ( A .R -1R ) )
13 pn0sr
 |-  ( A e. R. -> ( A +R ( A .R -1R ) ) = 0R )
14 12 13 syl5eq
 |-  ( A e. R. -> ( ( A .R -1R ) +R A ) = 0R )
15 0idsr
 |-  ( ( A .R -1R ) e. R. -> ( ( A .R -1R ) +R 0R ) = ( A .R -1R ) )
16 9 15 syl
 |-  ( A e. R. -> ( ( A .R -1R ) +R 0R ) = ( A .R -1R ) )
17 14 16 breq12d
 |-  ( A e. R. -> ( ( ( A .R -1R ) +R A )  0R 
18 11 17 bitrd
 |-  ( A e. R. -> ( A  0R 
19 mulgt0sr
 |-  ( ( 0R  0R 
20 19 anidms
 |-  ( 0R  0R 
21 18 20 syl6bi
 |-  ( A e. R. -> ( A  0R 
22 mulcomsr
 |-  ( -1R .R A ) = ( A .R -1R )
23 22 oveq1i
 |-  ( ( -1R .R A ) .R -1R ) = ( ( A .R -1R ) .R -1R )
24 mulasssr
 |-  ( ( -1R .R A ) .R -1R ) = ( -1R .R ( A .R -1R ) )
25 mulasssr
 |-  ( ( A .R -1R ) .R -1R ) = ( A .R ( -1R .R -1R ) )
26 23 24 25 3eqtr3i
 |-  ( -1R .R ( A .R -1R ) ) = ( A .R ( -1R .R -1R ) )
27 m1m1sr
 |-  ( -1R .R -1R ) = 1R
28 27 oveq2i
 |-  ( A .R ( -1R .R -1R ) ) = ( A .R 1R )
29 26 28 eqtri
 |-  ( -1R .R ( A .R -1R ) ) = ( A .R 1R )
30 29 oveq2i
 |-  ( A .R ( -1R .R ( A .R -1R ) ) ) = ( A .R ( A .R 1R ) )
31 mulasssr
 |-  ( ( A .R -1R ) .R ( A .R -1R ) ) = ( A .R ( -1R .R ( A .R -1R ) ) )
32 mulasssr
 |-  ( ( A .R A ) .R 1R ) = ( A .R ( A .R 1R ) )
33 30 31 32 3eqtr4i
 |-  ( ( A .R -1R ) .R ( A .R -1R ) ) = ( ( A .R A ) .R 1R )
34 mulclsr
 |-  ( ( A e. R. /\ A e. R. ) -> ( A .R A ) e. R. )
35 1idsr
 |-  ( ( A .R A ) e. R. -> ( ( A .R A ) .R 1R ) = ( A .R A ) )
36 34 35 syl
 |-  ( ( A e. R. /\ A e. R. ) -> ( ( A .R A ) .R 1R ) = ( A .R A ) )
37 36 anidms
 |-  ( A e. R. -> ( ( A .R A ) .R 1R ) = ( A .R A ) )
38 33 37 syl5eq
 |-  ( A e. R. -> ( ( A .R -1R ) .R ( A .R -1R ) ) = ( A .R A ) )
39 38 breq2d
 |-  ( A e. R. -> ( 0R  0R 
40 21 39 sylibd
 |-  ( A e. R. -> ( A  0R 
41 mulgt0sr
 |-  ( ( 0R  0R 
42 41 anidms
 |-  ( 0R  0R 
43 42 a1i
 |-  ( A e. R. -> ( 0R  0R 
44 40 43 jaod
 |-  ( A e. R. -> ( ( A  0R 
45 6 44 sylbird
 |-  ( A e. R. -> ( A =/= 0R -> 0R 
46 45 imp
 |-  ( ( A e. R. /\ A =/= 0R ) -> 0R