Step |
Hyp |
Ref |
Expression |
1 |
|
df-nr |
|- R. = ( ( P. X. P. ) /. ~R ) |
2 |
|
mulsrpr |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. x , y >. ] ~R .R [ <. z , w >. ] ~R ) = [ <. ( ( x .P. z ) +P. ( y .P. w ) ) , ( ( x .P. w ) +P. ( y .P. z ) ) >. ] ~R ) |
3 |
|
mulsrpr |
|- ( ( ( z e. P. /\ w e. P. ) /\ ( x e. P. /\ y e. P. ) ) -> ( [ <. z , w >. ] ~R .R [ <. x , y >. ] ~R ) = [ <. ( ( z .P. x ) +P. ( w .P. y ) ) , ( ( z .P. y ) +P. ( w .P. x ) ) >. ] ~R ) |
4 |
|
mulcompr |
|- ( x .P. z ) = ( z .P. x ) |
5 |
|
mulcompr |
|- ( y .P. w ) = ( w .P. y ) |
6 |
4 5
|
oveq12i |
|- ( ( x .P. z ) +P. ( y .P. w ) ) = ( ( z .P. x ) +P. ( w .P. y ) ) |
7 |
|
mulcompr |
|- ( x .P. w ) = ( w .P. x ) |
8 |
|
mulcompr |
|- ( y .P. z ) = ( z .P. y ) |
9 |
7 8
|
oveq12i |
|- ( ( x .P. w ) +P. ( y .P. z ) ) = ( ( w .P. x ) +P. ( z .P. y ) ) |
10 |
|
addcompr |
|- ( ( w .P. x ) +P. ( z .P. y ) ) = ( ( z .P. y ) +P. ( w .P. x ) ) |
11 |
9 10
|
eqtri |
|- ( ( x .P. w ) +P. ( y .P. z ) ) = ( ( z .P. y ) +P. ( w .P. x ) ) |
12 |
1 2 3 6 11
|
ecovcom |
|- ( ( A e. R. /\ B e. R. ) -> ( A .R B ) = ( B .R A ) ) |
13 |
|
dmmulsr |
|- dom .R = ( R. X. R. ) |
14 |
13
|
ndmovcom |
|- ( -. ( A e. R. /\ B e. R. ) -> ( A .R B ) = ( B .R A ) ) |
15 |
12 14
|
pm2.61i |
|- ( A .R B ) = ( B .R A ) |