| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-m1r |  |-  -1R = [ <. 1P , ( 1P +P. 1P ) >. ] ~R | 
						
							| 2 | 1 1 | oveq12i |  |-  ( -1R .R -1R ) = ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R .R [ <. 1P , ( 1P +P. 1P ) >. ] ~R ) | 
						
							| 3 |  | df-1r |  |-  1R = [ <. ( 1P +P. 1P ) , 1P >. ] ~R | 
						
							| 4 |  | 1pr |  |-  1P e. P. | 
						
							| 5 |  | addclpr |  |-  ( ( 1P e. P. /\ 1P e. P. ) -> ( 1P +P. 1P ) e. P. ) | 
						
							| 6 | 4 4 5 | mp2an |  |-  ( 1P +P. 1P ) e. P. | 
						
							| 7 |  | mulsrpr |  |-  ( ( ( 1P e. P. /\ ( 1P +P. 1P ) e. P. ) /\ ( 1P e. P. /\ ( 1P +P. 1P ) e. P. ) ) -> ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R .R [ <. 1P , ( 1P +P. 1P ) >. ] ~R ) = [ <. ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) , ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) >. ] ~R ) | 
						
							| 8 | 4 6 4 6 7 | mp4an |  |-  ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R .R [ <. 1P , ( 1P +P. 1P ) >. ] ~R ) = [ <. ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) , ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) >. ] ~R | 
						
							| 9 |  | addasspr |  |-  ( ( 1P +P. 1P ) +P. ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) ) = ( 1P +P. ( 1P +P. ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) ) ) | 
						
							| 10 |  | 1idpr |  |-  ( 1P e. P. -> ( 1P .P. 1P ) = 1P ) | 
						
							| 11 | 4 10 | ax-mp |  |-  ( 1P .P. 1P ) = 1P | 
						
							| 12 |  | distrpr |  |-  ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) = ( ( ( 1P +P. 1P ) .P. 1P ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) | 
						
							| 13 |  | mulcompr |  |-  ( 1P .P. ( 1P +P. 1P ) ) = ( ( 1P +P. 1P ) .P. 1P ) | 
						
							| 14 | 13 | oveq1i |  |-  ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) = ( ( ( 1P +P. 1P ) .P. 1P ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) | 
						
							| 15 | 12 14 | eqtr4i |  |-  ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) = ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) | 
						
							| 16 | 11 15 | oveq12i |  |-  ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) = ( 1P +P. ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) ) | 
						
							| 17 | 16 | oveq2i |  |-  ( 1P +P. ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) ) = ( 1P +P. ( 1P +P. ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) ) ) | 
						
							| 18 | 9 17 | eqtr4i |  |-  ( ( 1P +P. 1P ) +P. ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) ) = ( 1P +P. ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) ) | 
						
							| 19 |  | mulclpr |  |-  ( ( 1P e. P. /\ 1P e. P. ) -> ( 1P .P. 1P ) e. P. ) | 
						
							| 20 | 4 4 19 | mp2an |  |-  ( 1P .P. 1P ) e. P. | 
						
							| 21 |  | mulclpr |  |-  ( ( ( 1P +P. 1P ) e. P. /\ ( 1P +P. 1P ) e. P. ) -> ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) e. P. ) | 
						
							| 22 | 6 6 21 | mp2an |  |-  ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) e. P. | 
						
							| 23 |  | addclpr |  |-  ( ( ( 1P .P. 1P ) e. P. /\ ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) e. P. ) -> ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) e. P. ) | 
						
							| 24 | 20 22 23 | mp2an |  |-  ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) e. P. | 
						
							| 25 |  | mulclpr |  |-  ( ( 1P e. P. /\ ( 1P +P. 1P ) e. P. ) -> ( 1P .P. ( 1P +P. 1P ) ) e. P. ) | 
						
							| 26 | 4 6 25 | mp2an |  |-  ( 1P .P. ( 1P +P. 1P ) ) e. P. | 
						
							| 27 |  | mulclpr |  |-  ( ( ( 1P +P. 1P ) e. P. /\ 1P e. P. ) -> ( ( 1P +P. 1P ) .P. 1P ) e. P. ) | 
						
							| 28 | 6 4 27 | mp2an |  |-  ( ( 1P +P. 1P ) .P. 1P ) e. P. | 
						
							| 29 |  | addclpr |  |-  ( ( ( 1P .P. ( 1P +P. 1P ) ) e. P. /\ ( ( 1P +P. 1P ) .P. 1P ) e. P. ) -> ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) e. P. ) | 
						
							| 30 | 26 28 29 | mp2an |  |-  ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) e. P. | 
						
							| 31 |  | enreceq |  |-  ( ( ( ( 1P +P. 1P ) e. P. /\ 1P e. P. ) /\ ( ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) e. P. /\ ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) e. P. ) ) -> ( [ <. ( 1P +P. 1P ) , 1P >. ] ~R = [ <. ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) , ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) >. ] ~R <-> ( ( 1P +P. 1P ) +P. ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) ) = ( 1P +P. ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) ) ) ) | 
						
							| 32 | 6 4 24 30 31 | mp4an |  |-  ( [ <. ( 1P +P. 1P ) , 1P >. ] ~R = [ <. ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) , ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) >. ] ~R <-> ( ( 1P +P. 1P ) +P. ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) ) = ( 1P +P. ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) ) ) | 
						
							| 33 | 18 32 | mpbir |  |-  [ <. ( 1P +P. 1P ) , 1P >. ] ~R = [ <. ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) , ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) >. ] ~R | 
						
							| 34 | 8 33 | eqtr4i |  |-  ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R .R [ <. 1P , ( 1P +P. 1P ) >. ] ~R ) = [ <. ( 1P +P. 1P ) , 1P >. ] ~R | 
						
							| 35 | 3 34 | eqtr4i |  |-  1R = ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R .R [ <. 1P , ( 1P +P. 1P ) >. ] ~R ) | 
						
							| 36 | 2 35 | eqtr4i |  |-  ( -1R .R -1R ) = 1R |