Metamath Proof Explorer


Theorem mp4an

Description: An inference based on modus ponens. (Contributed by Jeff Madsen, 15-Jun-2010)

Ref Expression
Hypotheses mp4an.1
|- ph
mp4an.2
|- ps
mp4an.3
|- ch
mp4an.4
|- th
mp4an.5
|- ( ( ( ph /\ ps ) /\ ( ch /\ th ) ) -> ta )
Assertion mp4an
|- ta

Proof

Step Hyp Ref Expression
1 mp4an.1
 |-  ph
2 mp4an.2
 |-  ps
3 mp4an.3
 |-  ch
4 mp4an.4
 |-  th
5 mp4an.5
 |-  ( ( ( ph /\ ps ) /\ ( ch /\ th ) ) -> ta )
6 1 2 pm3.2i
 |-  ( ph /\ ps )
7 3 4 pm3.2i
 |-  ( ch /\ th )
8 6 7 5 mp2an
 |-  ta