Metamath Proof Explorer
Description: An inference based on modus ponens. (Contributed by Jeff Madsen, 15-Jun-2010)
|
|
Ref |
Expression |
|
Hypotheses |
mp4an.1 |
⊢ 𝜑 |
|
|
mp4an.2 |
⊢ 𝜓 |
|
|
mp4an.3 |
⊢ 𝜒 |
|
|
mp4an.4 |
⊢ 𝜃 |
|
|
mp4an.5 |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ 𝜃 ) ) → 𝜏 ) |
|
Assertion |
mp4an |
⊢ 𝜏 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mp4an.1 |
⊢ 𝜑 |
2 |
|
mp4an.2 |
⊢ 𝜓 |
3 |
|
mp4an.3 |
⊢ 𝜒 |
4 |
|
mp4an.4 |
⊢ 𝜃 |
5 |
|
mp4an.5 |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ 𝜃 ) ) → 𝜏 ) |
6 |
1 2
|
pm3.2i |
⊢ ( 𝜑 ∧ 𝜓 ) |
7 |
3 4
|
pm3.2i |
⊢ ( 𝜒 ∧ 𝜃 ) |
8 |
6 7 5
|
mp2an |
⊢ 𝜏 |