Metamath Proof Explorer


Theorem mpan2d

Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004)

Ref Expression
Hypotheses mpan2d.1 ( 𝜑𝜒 )
mpan2d.2 ( 𝜑 → ( ( 𝜓𝜒 ) → 𝜃 ) )
Assertion mpan2d ( 𝜑 → ( 𝜓𝜃 ) )

Proof

Step Hyp Ref Expression
1 mpan2d.1 ( 𝜑𝜒 )
2 mpan2d.2 ( 𝜑 → ( ( 𝜓𝜒 ) → 𝜃 ) )
3 2 expd ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
4 1 3 mpid ( 𝜑 → ( 𝜓𝜃 ) )