Description: Addition of positive reals is associative. Proposition 9-3.5(i) of Gleason p. 123. (Contributed by NM, 18-Mar-1996) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | addasspr | |- ( ( A +P. B ) +P. C ) = ( A +P. ( B +P. C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-plp | |- +P. = ( w e. P. , v e. P. |-> { x | E. y e. w E. z e. v x = ( y +Q z ) } ) |
|
2 | addclnq | |- ( ( y e. Q. /\ z e. Q. ) -> ( y +Q z ) e. Q. ) |
|
3 | dmplp | |- dom +P. = ( P. X. P. ) |
|
4 | addclpr | |- ( ( f e. P. /\ g e. P. ) -> ( f +P. g ) e. P. ) |
|
5 | addassnq | |- ( ( f +Q g ) +Q h ) = ( f +Q ( g +Q h ) ) |
|
6 | 1 2 3 4 5 | genpass | |- ( ( A +P. B ) +P. C ) = ( A +P. ( B +P. C ) ) |