| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-nr | 
							 |-  R. = ( ( P. X. P. ) /. ~R )  | 
						
						
							| 2 | 
							
								
							 | 
							oveq1 | 
							 |-  ( [ <. x , y >. ] ~R = A -> ( [ <. x , y >. ] ~R +R 0R ) = ( A +R 0R ) )  | 
						
						
							| 3 | 
							
								
							 | 
							id | 
							 |-  ( [ <. x , y >. ] ~R = A -> [ <. x , y >. ] ~R = A )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							eqeq12d | 
							 |-  ( [ <. x , y >. ] ~R = A -> ( ( [ <. x , y >. ] ~R +R 0R ) = [ <. x , y >. ] ~R <-> ( A +R 0R ) = A ) )  | 
						
						
							| 5 | 
							
								
							 | 
							df-0r | 
							 |-  0R = [ <. 1P , 1P >. ] ~R  | 
						
						
							| 6 | 
							
								5
							 | 
							oveq2i | 
							 |-  ( [ <. x , y >. ] ~R +R 0R ) = ( [ <. x , y >. ] ~R +R [ <. 1P , 1P >. ] ~R )  | 
						
						
							| 7 | 
							
								
							 | 
							1pr | 
							 |-  1P e. P.  | 
						
						
							| 8 | 
							
								
							 | 
							addsrpr | 
							 |-  ( ( ( x e. P. /\ y e. P. ) /\ ( 1P e. P. /\ 1P e. P. ) ) -> ( [ <. x , y >. ] ~R +R [ <. 1P , 1P >. ] ~R ) = [ <. ( x +P. 1P ) , ( y +P. 1P ) >. ] ~R )  | 
						
						
							| 9 | 
							
								7 7 8
							 | 
							mpanr12 | 
							 |-  ( ( x e. P. /\ y e. P. ) -> ( [ <. x , y >. ] ~R +R [ <. 1P , 1P >. ] ~R ) = [ <. ( x +P. 1P ) , ( y +P. 1P ) >. ] ~R )  | 
						
						
							| 10 | 
							
								
							 | 
							addclpr | 
							 |-  ( ( x e. P. /\ 1P e. P. ) -> ( x +P. 1P ) e. P. )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							mpan2 | 
							 |-  ( x e. P. -> ( x +P. 1P ) e. P. )  | 
						
						
							| 12 | 
							
								
							 | 
							addclpr | 
							 |-  ( ( y e. P. /\ 1P e. P. ) -> ( y +P. 1P ) e. P. )  | 
						
						
							| 13 | 
							
								7 12
							 | 
							mpan2 | 
							 |-  ( y e. P. -> ( y +P. 1P ) e. P. )  | 
						
						
							| 14 | 
							
								11 13
							 | 
							anim12i | 
							 |-  ( ( x e. P. /\ y e. P. ) -> ( ( x +P. 1P ) e. P. /\ ( y +P. 1P ) e. P. ) )  | 
						
						
							| 15 | 
							
								
							 | 
							vex | 
							 |-  x e. _V  | 
						
						
							| 16 | 
							
								
							 | 
							vex | 
							 |-  y e. _V  | 
						
						
							| 17 | 
							
								7
							 | 
							elexi | 
							 |-  1P e. _V  | 
						
						
							| 18 | 
							
								
							 | 
							addcompr | 
							 |-  ( z +P. w ) = ( w +P. z )  | 
						
						
							| 19 | 
							
								
							 | 
							addasspr | 
							 |-  ( ( z +P. w ) +P. v ) = ( z +P. ( w +P. v ) )  | 
						
						
							| 20 | 
							
								15 16 17 18 19
							 | 
							caov12 | 
							 |-  ( x +P. ( y +P. 1P ) ) = ( y +P. ( x +P. 1P ) )  | 
						
						
							| 21 | 
							
								
							 | 
							enreceq | 
							 |-  ( ( ( x e. P. /\ y e. P. ) /\ ( ( x +P. 1P ) e. P. /\ ( y +P. 1P ) e. P. ) ) -> ( [ <. x , y >. ] ~R = [ <. ( x +P. 1P ) , ( y +P. 1P ) >. ] ~R <-> ( x +P. ( y +P. 1P ) ) = ( y +P. ( x +P. 1P ) ) ) )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							mpbiri | 
							 |-  ( ( ( x e. P. /\ y e. P. ) /\ ( ( x +P. 1P ) e. P. /\ ( y +P. 1P ) e. P. ) ) -> [ <. x , y >. ] ~R = [ <. ( x +P. 1P ) , ( y +P. 1P ) >. ] ~R )  | 
						
						
							| 23 | 
							
								14 22
							 | 
							mpdan | 
							 |-  ( ( x e. P. /\ y e. P. ) -> [ <. x , y >. ] ~R = [ <. ( x +P. 1P ) , ( y +P. 1P ) >. ] ~R )  | 
						
						
							| 24 | 
							
								9 23
							 | 
							eqtr4d | 
							 |-  ( ( x e. P. /\ y e. P. ) -> ( [ <. x , y >. ] ~R +R [ <. 1P , 1P >. ] ~R ) = [ <. x , y >. ] ~R )  | 
						
						
							| 25 | 
							
								6 24
							 | 
							eqtrid | 
							 |-  ( ( x e. P. /\ y e. P. ) -> ( [ <. x , y >. ] ~R +R 0R ) = [ <. x , y >. ] ~R )  | 
						
						
							| 26 | 
							
								1 4 25
							 | 
							ecoptocl | 
							 |-  ( A e. R. -> ( A +R 0R ) = A )  |