| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-nr | 
							 |-  R. = ( ( P. X. P. ) /. ~R )  | 
						
						
							| 2 | 
							
								
							 | 
							oveq1 | 
							 |-  ( [ <. x , y >. ] ~R = A -> ( [ <. x , y >. ] ~R .R 1R ) = ( A .R 1R ) )  | 
						
						
							| 3 | 
							
								
							 | 
							id | 
							 |-  ( [ <. x , y >. ] ~R = A -> [ <. x , y >. ] ~R = A )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							eqeq12d | 
							 |-  ( [ <. x , y >. ] ~R = A -> ( ( [ <. x , y >. ] ~R .R 1R ) = [ <. x , y >. ] ~R <-> ( A .R 1R ) = A ) )  | 
						
						
							| 5 | 
							
								
							 | 
							df-1r | 
							 |-  1R = [ <. ( 1P +P. 1P ) , 1P >. ] ~R  | 
						
						
							| 6 | 
							
								5
							 | 
							oveq2i | 
							 |-  ( [ <. x , y >. ] ~R .R 1R ) = ( [ <. x , y >. ] ~R .R [ <. ( 1P +P. 1P ) , 1P >. ] ~R )  | 
						
						
							| 7 | 
							
								
							 | 
							1pr | 
							 |-  1P e. P.  | 
						
						
							| 8 | 
							
								
							 | 
							addclpr | 
							 |-  ( ( 1P e. P. /\ 1P e. P. ) -> ( 1P +P. 1P ) e. P. )  | 
						
						
							| 9 | 
							
								7 7 8
							 | 
							mp2an | 
							 |-  ( 1P +P. 1P ) e. P.  | 
						
						
							| 10 | 
							
								
							 | 
							mulsrpr | 
							 |-  ( ( ( x e. P. /\ y e. P. ) /\ ( ( 1P +P. 1P ) e. P. /\ 1P e. P. ) ) -> ( [ <. x , y >. ] ~R .R [ <. ( 1P +P. 1P ) , 1P >. ] ~R ) = [ <. ( ( x .P. ( 1P +P. 1P ) ) +P. ( y .P. 1P ) ) , ( ( x .P. 1P ) +P. ( y .P. ( 1P +P. 1P ) ) ) >. ] ~R )  | 
						
						
							| 11 | 
							
								9 7 10
							 | 
							mpanr12 | 
							 |-  ( ( x e. P. /\ y e. P. ) -> ( [ <. x , y >. ] ~R .R [ <. ( 1P +P. 1P ) , 1P >. ] ~R ) = [ <. ( ( x .P. ( 1P +P. 1P ) ) +P. ( y .P. 1P ) ) , ( ( x .P. 1P ) +P. ( y .P. ( 1P +P. 1P ) ) ) >. ] ~R )  | 
						
						
							| 12 | 
							
								
							 | 
							distrpr | 
							 |-  ( x .P. ( 1P +P. 1P ) ) = ( ( x .P. 1P ) +P. ( x .P. 1P ) )  | 
						
						
							| 13 | 
							
								
							 | 
							1idpr | 
							 |-  ( x e. P. -> ( x .P. 1P ) = x )  | 
						
						
							| 14 | 
							
								13
							 | 
							oveq1d | 
							 |-  ( x e. P. -> ( ( x .P. 1P ) +P. ( x .P. 1P ) ) = ( x +P. ( x .P. 1P ) ) )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							eqtr2id | 
							 |-  ( x e. P. -> ( x +P. ( x .P. 1P ) ) = ( x .P. ( 1P +P. 1P ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							distrpr | 
							 |-  ( y .P. ( 1P +P. 1P ) ) = ( ( y .P. 1P ) +P. ( y .P. 1P ) )  | 
						
						
							| 17 | 
							
								
							 | 
							1idpr | 
							 |-  ( y e. P. -> ( y .P. 1P ) = y )  | 
						
						
							| 18 | 
							
								17
							 | 
							oveq1d | 
							 |-  ( y e. P. -> ( ( y .P. 1P ) +P. ( y .P. 1P ) ) = ( y +P. ( y .P. 1P ) ) )  | 
						
						
							| 19 | 
							
								16 18
							 | 
							eqtrid | 
							 |-  ( y e. P. -> ( y .P. ( 1P +P. 1P ) ) = ( y +P. ( y .P. 1P ) ) )  | 
						
						
							| 20 | 
							
								15 19
							 | 
							oveqan12d | 
							 |-  ( ( x e. P. /\ y e. P. ) -> ( ( x +P. ( x .P. 1P ) ) +P. ( y .P. ( 1P +P. 1P ) ) ) = ( ( x .P. ( 1P +P. 1P ) ) +P. ( y +P. ( y .P. 1P ) ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							addasspr | 
							 |-  ( ( x +P. ( x .P. 1P ) ) +P. ( y .P. ( 1P +P. 1P ) ) ) = ( x +P. ( ( x .P. 1P ) +P. ( y .P. ( 1P +P. 1P ) ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							ovex | 
							 |-  ( x .P. ( 1P +P. 1P ) ) e. _V  | 
						
						
							| 23 | 
							
								
							 | 
							vex | 
							 |-  y e. _V  | 
						
						
							| 24 | 
							
								
							 | 
							ovex | 
							 |-  ( y .P. 1P ) e. _V  | 
						
						
							| 25 | 
							
								
							 | 
							addcompr | 
							 |-  ( z +P. w ) = ( w +P. z )  | 
						
						
							| 26 | 
							
								
							 | 
							addasspr | 
							 |-  ( ( z +P. w ) +P. v ) = ( z +P. ( w +P. v ) )  | 
						
						
							| 27 | 
							
								22 23 24 25 26
							 | 
							caov12 | 
							 |-  ( ( x .P. ( 1P +P. 1P ) ) +P. ( y +P. ( y .P. 1P ) ) ) = ( y +P. ( ( x .P. ( 1P +P. 1P ) ) +P. ( y .P. 1P ) ) )  | 
						
						
							| 28 | 
							
								20 21 27
							 | 
							3eqtr3g | 
							 |-  ( ( x e. P. /\ y e. P. ) -> ( x +P. ( ( x .P. 1P ) +P. ( y .P. ( 1P +P. 1P ) ) ) ) = ( y +P. ( ( x .P. ( 1P +P. 1P ) ) +P. ( y .P. 1P ) ) ) )  | 
						
						
							| 29 | 
							
								
							 | 
							mulclpr | 
							 |-  ( ( x e. P. /\ ( 1P +P. 1P ) e. P. ) -> ( x .P. ( 1P +P. 1P ) ) e. P. )  | 
						
						
							| 30 | 
							
								9 29
							 | 
							mpan2 | 
							 |-  ( x e. P. -> ( x .P. ( 1P +P. 1P ) ) e. P. )  | 
						
						
							| 31 | 
							
								
							 | 
							mulclpr | 
							 |-  ( ( y e. P. /\ 1P e. P. ) -> ( y .P. 1P ) e. P. )  | 
						
						
							| 32 | 
							
								7 31
							 | 
							mpan2 | 
							 |-  ( y e. P. -> ( y .P. 1P ) e. P. )  | 
						
						
							| 33 | 
							
								
							 | 
							addclpr | 
							 |-  ( ( ( x .P. ( 1P +P. 1P ) ) e. P. /\ ( y .P. 1P ) e. P. ) -> ( ( x .P. ( 1P +P. 1P ) ) +P. ( y .P. 1P ) ) e. P. )  | 
						
						
							| 34 | 
							
								30 32 33
							 | 
							syl2an | 
							 |-  ( ( x e. P. /\ y e. P. ) -> ( ( x .P. ( 1P +P. 1P ) ) +P. ( y .P. 1P ) ) e. P. )  | 
						
						
							| 35 | 
							
								
							 | 
							mulclpr | 
							 |-  ( ( x e. P. /\ 1P e. P. ) -> ( x .P. 1P ) e. P. )  | 
						
						
							| 36 | 
							
								7 35
							 | 
							mpan2 | 
							 |-  ( x e. P. -> ( x .P. 1P ) e. P. )  | 
						
						
							| 37 | 
							
								
							 | 
							mulclpr | 
							 |-  ( ( y e. P. /\ ( 1P +P. 1P ) e. P. ) -> ( y .P. ( 1P +P. 1P ) ) e. P. )  | 
						
						
							| 38 | 
							
								9 37
							 | 
							mpan2 | 
							 |-  ( y e. P. -> ( y .P. ( 1P +P. 1P ) ) e. P. )  | 
						
						
							| 39 | 
							
								
							 | 
							addclpr | 
							 |-  ( ( ( x .P. 1P ) e. P. /\ ( y .P. ( 1P +P. 1P ) ) e. P. ) -> ( ( x .P. 1P ) +P. ( y .P. ( 1P +P. 1P ) ) ) e. P. )  | 
						
						
							| 40 | 
							
								36 38 39
							 | 
							syl2an | 
							 |-  ( ( x e. P. /\ y e. P. ) -> ( ( x .P. 1P ) +P. ( y .P. ( 1P +P. 1P ) ) ) e. P. )  | 
						
						
							| 41 | 
							
								34 40
							 | 
							anim12i | 
							 |-  ( ( ( x e. P. /\ y e. P. ) /\ ( x e. P. /\ y e. P. ) ) -> ( ( ( x .P. ( 1P +P. 1P ) ) +P. ( y .P. 1P ) ) e. P. /\ ( ( x .P. 1P ) +P. ( y .P. ( 1P +P. 1P ) ) ) e. P. ) )  | 
						
						
							| 42 | 
							
								
							 | 
							enreceq | 
							 |-  ( ( ( x e. P. /\ y e. P. ) /\ ( ( ( x .P. ( 1P +P. 1P ) ) +P. ( y .P. 1P ) ) e. P. /\ ( ( x .P. 1P ) +P. ( y .P. ( 1P +P. 1P ) ) ) e. P. ) ) -> ( [ <. x , y >. ] ~R = [ <. ( ( x .P. ( 1P +P. 1P ) ) +P. ( y .P. 1P ) ) , ( ( x .P. 1P ) +P. ( y .P. ( 1P +P. 1P ) ) ) >. ] ~R <-> ( x +P. ( ( x .P. 1P ) +P. ( y .P. ( 1P +P. 1P ) ) ) ) = ( y +P. ( ( x .P. ( 1P +P. 1P ) ) +P. ( y .P. 1P ) ) ) ) )  | 
						
						
							| 43 | 
							
								41 42
							 | 
							syldan | 
							 |-  ( ( ( x e. P. /\ y e. P. ) /\ ( x e. P. /\ y e. P. ) ) -> ( [ <. x , y >. ] ~R = [ <. ( ( x .P. ( 1P +P. 1P ) ) +P. ( y .P. 1P ) ) , ( ( x .P. 1P ) +P. ( y .P. ( 1P +P. 1P ) ) ) >. ] ~R <-> ( x +P. ( ( x .P. 1P ) +P. ( y .P. ( 1P +P. 1P ) ) ) ) = ( y +P. ( ( x .P. ( 1P +P. 1P ) ) +P. ( y .P. 1P ) ) ) ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							anidms | 
							 |-  ( ( x e. P. /\ y e. P. ) -> ( [ <. x , y >. ] ~R = [ <. ( ( x .P. ( 1P +P. 1P ) ) +P. ( y .P. 1P ) ) , ( ( x .P. 1P ) +P. ( y .P. ( 1P +P. 1P ) ) ) >. ] ~R <-> ( x +P. ( ( x .P. 1P ) +P. ( y .P. ( 1P +P. 1P ) ) ) ) = ( y +P. ( ( x .P. ( 1P +P. 1P ) ) +P. ( y .P. 1P ) ) ) ) )  | 
						
						
							| 45 | 
							
								28 44
							 | 
							mpbird | 
							 |-  ( ( x e. P. /\ y e. P. ) -> [ <. x , y >. ] ~R = [ <. ( ( x .P. ( 1P +P. 1P ) ) +P. ( y .P. 1P ) ) , ( ( x .P. 1P ) +P. ( y .P. ( 1P +P. 1P ) ) ) >. ] ~R )  | 
						
						
							| 46 | 
							
								11 45
							 | 
							eqtr4d | 
							 |-  ( ( x e. P. /\ y e. P. ) -> ( [ <. x , y >. ] ~R .R [ <. ( 1P +P. 1P ) , 1P >. ] ~R ) = [ <. x , y >. ] ~R )  | 
						
						
							| 47 | 
							
								6 46
							 | 
							eqtrid | 
							 |-  ( ( x e. P. /\ y e. P. ) -> ( [ <. x , y >. ] ~R .R 1R ) = [ <. x , y >. ] ~R )  | 
						
						
							| 48 | 
							
								1 4 47
							 | 
							ecoptocl | 
							 |-  ( A e. R. -> ( A .R 1R ) = A )  |