Metamath Proof Explorer


Theorem mappsrpr

Description: Mapping from positive signed reals to positive reals. (Contributed by NM, 17-May-1996) (Revised by Mario Carneiro, 15-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypothesis mappsrpr.2 C𝑹
Assertion mappsrpr C+𝑹-1𝑹<𝑹C+𝑹A1𝑷~𝑹A𝑷

Proof

Step Hyp Ref Expression
1 mappsrpr.2 C𝑹
2 df-m1r -1𝑹=1𝑷1𝑷+𝑷1𝑷~𝑹
3 2 breq1i -1𝑹<𝑹A1𝑷~𝑹1𝑷1𝑷+𝑷1𝑷~𝑹<𝑹A1𝑷~𝑹
4 ltsrpr 1𝑷1𝑷+𝑷1𝑷~𝑹<𝑹A1𝑷~𝑹1𝑷+𝑷1𝑷<𝑷1𝑷+𝑷1𝑷+𝑷A
5 3 4 bitri -1𝑹<𝑹A1𝑷~𝑹1𝑷+𝑷1𝑷<𝑷1𝑷+𝑷1𝑷+𝑷A
6 ltasr C𝑹-1𝑹<𝑹A1𝑷~𝑹C+𝑹-1𝑹<𝑹C+𝑹A1𝑷~𝑹
7 1 6 ax-mp -1𝑹<𝑹A1𝑷~𝑹C+𝑹-1𝑹<𝑹C+𝑹A1𝑷~𝑹
8 ltrelpr <𝑷𝑷×𝑷
9 8 brel 1𝑷+𝑷1𝑷<𝑷1𝑷+𝑷1𝑷+𝑷A1𝑷+𝑷1𝑷𝑷1𝑷+𝑷1𝑷+𝑷A𝑷
10 dmplp dom+𝑷=𝑷×𝑷
11 0npr ¬𝑷
12 10 11 ndmovrcl 1𝑷+𝑷1𝑷+𝑷A𝑷1𝑷+𝑷1𝑷𝑷A𝑷
13 12 simprd 1𝑷+𝑷1𝑷+𝑷A𝑷A𝑷
14 9 13 simpl2im 1𝑷+𝑷1𝑷<𝑷1𝑷+𝑷1𝑷+𝑷AA𝑷
15 1pr 1𝑷𝑷
16 addclpr 1𝑷𝑷1𝑷𝑷1𝑷+𝑷1𝑷𝑷
17 15 15 16 mp2an 1𝑷+𝑷1𝑷𝑷
18 ltaddpr 1𝑷+𝑷1𝑷𝑷A𝑷1𝑷+𝑷1𝑷<𝑷1𝑷+𝑷1𝑷+𝑷A
19 17 18 mpan A𝑷1𝑷+𝑷1𝑷<𝑷1𝑷+𝑷1𝑷+𝑷A
20 14 19 impbii 1𝑷+𝑷1𝑷<𝑷1𝑷+𝑷1𝑷+𝑷AA𝑷
21 5 7 20 3bitr3i C+𝑹-1𝑹<𝑹C+𝑹A1𝑷~𝑹A𝑷