Metamath Proof Explorer


Theorem ltpsrpr

Description: Mapping of order from positive signed reals to positive reals. (Contributed by NM, 17-May-1996) (Revised by Mario Carneiro, 15-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypothesis ltpsrpr.3 C𝑹
Assertion ltpsrpr C+𝑹A1𝑷~𝑹<𝑹C+𝑹B1𝑷~𝑹A<𝑷B

Proof

Step Hyp Ref Expression
1 ltpsrpr.3 C𝑹
2 ltasr C𝑹A1𝑷~𝑹<𝑹B1𝑷~𝑹C+𝑹A1𝑷~𝑹<𝑹C+𝑹B1𝑷~𝑹
3 1 2 ax-mp A1𝑷~𝑹<𝑹B1𝑷~𝑹C+𝑹A1𝑷~𝑹<𝑹C+𝑹B1𝑷~𝑹
4 addcompr A+𝑷1𝑷=1𝑷+𝑷A
5 4 breq1i A+𝑷1𝑷<𝑷1𝑷+𝑷B1𝑷+𝑷A<𝑷1𝑷+𝑷B
6 ltsrpr A1𝑷~𝑹<𝑹B1𝑷~𝑹A+𝑷1𝑷<𝑷1𝑷+𝑷B
7 1pr 1𝑷𝑷
8 ltapr 1𝑷𝑷A<𝑷B1𝑷+𝑷A<𝑷1𝑷+𝑷B
9 7 8 ax-mp A<𝑷B1𝑷+𝑷A<𝑷1𝑷+𝑷B
10 5 6 9 3bitr4i A1𝑷~𝑹<𝑹B1𝑷~𝑹A<𝑷B
11 3 10 bitr3i C+𝑹A1𝑷~𝑹<𝑹C+𝑹B1𝑷~𝑹A<𝑷B