| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltpsrpr.3 |  |-  C e. R. | 
						
							| 2 |  | ltasr |  |-  ( C e. R. -> ( [ <. A , 1P >. ] ~R . ] ~R <-> ( C +R [ <. A , 1P >. ] ~R ) . ] ~R ) ) ) | 
						
							| 3 | 1 2 | ax-mp |  |-  ( [ <. A , 1P >. ] ~R . ] ~R <-> ( C +R [ <. A , 1P >. ] ~R ) . ] ~R ) ) | 
						
							| 4 |  | addcompr |  |-  ( A +P. 1P ) = ( 1P +P. A ) | 
						
							| 5 | 4 | breq1i |  |-  ( ( A +P. 1P )  ( 1P +P. A )  | 
						
							| 6 |  | ltsrpr |  |-  ( [ <. A , 1P >. ] ~R . ] ~R <-> ( A +P. 1P )  | 
						
							| 7 |  | 1pr |  |-  1P e. P. | 
						
							| 8 |  | ltapr |  |-  ( 1P e. P. -> ( A  ( 1P +P. A )  | 
						
							| 9 | 7 8 | ax-mp |  |-  ( A  ( 1P +P. A )  | 
						
							| 10 | 5 6 9 | 3bitr4i |  |-  ( [ <. A , 1P >. ] ~R . ] ~R <-> A  | 
						
							| 11 | 3 10 | bitr3i |  |-  ( ( C +R [ <. A , 1P >. ] ~R ) . ] ~R ) <-> A  |