Metamath Proof Explorer


Theorem ltpsrpr

Description: Mapping of order from positive signed reals to positive reals. (Contributed by NM, 17-May-1996) (Revised by Mario Carneiro, 15-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypothesis ltpsrpr.3 𝐶R
Assertion ltpsrpr ( ( 𝐶 +R [ ⟨ 𝐴 , 1P ⟩ ] ~R ) <R ( 𝐶 +R [ ⟨ 𝐵 , 1P ⟩ ] ~R ) ↔ 𝐴 <P 𝐵 )

Proof

Step Hyp Ref Expression
1 ltpsrpr.3 𝐶R
2 ltasr ( 𝐶R → ( [ ⟨ 𝐴 , 1P ⟩ ] ~R <R [ ⟨ 𝐵 , 1P ⟩ ] ~R ↔ ( 𝐶 +R [ ⟨ 𝐴 , 1P ⟩ ] ~R ) <R ( 𝐶 +R [ ⟨ 𝐵 , 1P ⟩ ] ~R ) ) )
3 1 2 ax-mp ( [ ⟨ 𝐴 , 1P ⟩ ] ~R <R [ ⟨ 𝐵 , 1P ⟩ ] ~R ↔ ( 𝐶 +R [ ⟨ 𝐴 , 1P ⟩ ] ~R ) <R ( 𝐶 +R [ ⟨ 𝐵 , 1P ⟩ ] ~R ) )
4 addcompr ( 𝐴 +P 1P ) = ( 1P +P 𝐴 )
5 4 breq1i ( ( 𝐴 +P 1P ) <P ( 1P +P 𝐵 ) ↔ ( 1P +P 𝐴 ) <P ( 1P +P 𝐵 ) )
6 ltsrpr ( [ ⟨ 𝐴 , 1P ⟩ ] ~R <R [ ⟨ 𝐵 , 1P ⟩ ] ~R ↔ ( 𝐴 +P 1P ) <P ( 1P +P 𝐵 ) )
7 1pr 1PP
8 ltapr ( 1PP → ( 𝐴 <P 𝐵 ↔ ( 1P +P 𝐴 ) <P ( 1P +P 𝐵 ) ) )
9 7 8 ax-mp ( 𝐴 <P 𝐵 ↔ ( 1P +P 𝐴 ) <P ( 1P +P 𝐵 ) )
10 5 6 9 3bitr4i ( [ ⟨ 𝐴 , 1P ⟩ ] ~R <R [ ⟨ 𝐵 , 1P ⟩ ] ~R𝐴 <P 𝐵 )
11 3 10 bitr3i ( ( 𝐶 +R [ ⟨ 𝐴 , 1P ⟩ ] ~R ) <R ( 𝐶 +R [ ⟨ 𝐵 , 1P ⟩ ] ~R ) ↔ 𝐴 <P 𝐵 )