Metamath Proof Explorer


Theorem recexpr

Description: The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of Gleason p. 124. (Contributed by NM, 15-May-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Assertion recexpr A𝑷x𝑷A𝑷x=1𝑷

Proof

Step Hyp Ref Expression
1 breq1 z=wz<𝑸yw<𝑸y
2 1 anbi1d z=wz<𝑸y¬*𝑸yAw<𝑸y¬*𝑸yA
3 2 exbidv z=wyz<𝑸y¬*𝑸yAyw<𝑸y¬*𝑸yA
4 3 cbvabv z|yz<𝑸y¬*𝑸yA=w|yw<𝑸y¬*𝑸yA
5 4 reclem2pr A𝑷z|yz<𝑸y¬*𝑸yA𝑷
6 4 reclem4pr A𝑷A𝑷z|yz<𝑸y¬*𝑸yA=1𝑷
7 oveq2 x=z|yz<𝑸y¬*𝑸yAA𝑷x=A𝑷z|yz<𝑸y¬*𝑸yA
8 7 eqeq1d x=z|yz<𝑸y¬*𝑸yAA𝑷x=1𝑷A𝑷z|yz<𝑸y¬*𝑸yA=1𝑷
9 8 rspcev z|yz<𝑸y¬*𝑸yA𝑷A𝑷z|yz<𝑸y¬*𝑸yA=1𝑷x𝑷A𝑷x=1𝑷
10 5 6 9 syl2anc A𝑷x𝑷A𝑷x=1𝑷