| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq1 | ⊢ ( 𝑧  =  𝑤  →  ( 𝑧  <Q  𝑦  ↔  𝑤  <Q  𝑦 ) ) | 
						
							| 2 | 1 | anbi1d | ⊢ ( 𝑧  =  𝑤  →  ( ( 𝑧  <Q  𝑦  ∧  ¬  ( *Q ‘ 𝑦 )  ∈  𝐴 )  ↔  ( 𝑤  <Q  𝑦  ∧  ¬  ( *Q ‘ 𝑦 )  ∈  𝐴 ) ) ) | 
						
							| 3 | 2 | exbidv | ⊢ ( 𝑧  =  𝑤  →  ( ∃ 𝑦 ( 𝑧  <Q  𝑦  ∧  ¬  ( *Q ‘ 𝑦 )  ∈  𝐴 )  ↔  ∃ 𝑦 ( 𝑤  <Q  𝑦  ∧  ¬  ( *Q ‘ 𝑦 )  ∈  𝐴 ) ) ) | 
						
							| 4 | 3 | cbvabv | ⊢ { 𝑧  ∣  ∃ 𝑦 ( 𝑧  <Q  𝑦  ∧  ¬  ( *Q ‘ 𝑦 )  ∈  𝐴 ) }  =  { 𝑤  ∣  ∃ 𝑦 ( 𝑤  <Q  𝑦  ∧  ¬  ( *Q ‘ 𝑦 )  ∈  𝐴 ) } | 
						
							| 5 | 4 | reclem2pr | ⊢ ( 𝐴  ∈  P  →  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  <Q  𝑦  ∧  ¬  ( *Q ‘ 𝑦 )  ∈  𝐴 ) }  ∈  P ) | 
						
							| 6 | 4 | reclem4pr | ⊢ ( 𝐴  ∈  P  →  ( 𝐴  ·P  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  <Q  𝑦  ∧  ¬  ( *Q ‘ 𝑦 )  ∈  𝐴 ) } )  =  1P ) | 
						
							| 7 |  | oveq2 | ⊢ ( 𝑥  =  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  <Q  𝑦  ∧  ¬  ( *Q ‘ 𝑦 )  ∈  𝐴 ) }  →  ( 𝐴  ·P  𝑥 )  =  ( 𝐴  ·P  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  <Q  𝑦  ∧  ¬  ( *Q ‘ 𝑦 )  ∈  𝐴 ) } ) ) | 
						
							| 8 | 7 | eqeq1d | ⊢ ( 𝑥  =  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  <Q  𝑦  ∧  ¬  ( *Q ‘ 𝑦 )  ∈  𝐴 ) }  →  ( ( 𝐴  ·P  𝑥 )  =  1P  ↔  ( 𝐴  ·P  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  <Q  𝑦  ∧  ¬  ( *Q ‘ 𝑦 )  ∈  𝐴 ) } )  =  1P ) ) | 
						
							| 9 | 8 | rspcev | ⊢ ( ( { 𝑧  ∣  ∃ 𝑦 ( 𝑧  <Q  𝑦  ∧  ¬  ( *Q ‘ 𝑦 )  ∈  𝐴 ) }  ∈  P  ∧  ( 𝐴  ·P  { 𝑧  ∣  ∃ 𝑦 ( 𝑧  <Q  𝑦  ∧  ¬  ( *Q ‘ 𝑦 )  ∈  𝐴 ) } )  =  1P )  →  ∃ 𝑥  ∈  P ( 𝐴  ·P  𝑥 )  =  1P ) | 
						
							| 10 | 5 6 9 | syl2anc | ⊢ ( 𝐴  ∈  P  →  ∃ 𝑥  ∈  P ( 𝐴  ·P  𝑥 )  =  1P ) |